
MEW 65N GENERATION KNOWLEDGE PROCESSING VOLUM 1(U) -A
SYRACUSE UNIV MV J A ROBINSON ET AL. OCT 87
RAC-TR-87-165-VOL-1 F28W84-K-88U1

UNCLRSSIFIED F/G 12/5lll

EllElllElllliE

ElEElhllhllllE
EEElIEEEllEllI
EIIIEEIIIEEEE

1.4bI f? 8

l 125 1111.4 j 1. 6

NCROCOPY RESOLUTI'ON TEST CHAR

*4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NU~~h "VlULL'-w- w'-WW,7

AD-A 190 165

RADC-TR-87-165, Vol I (of three)
Final Technical Report
October 1987

NEW GENERATION KNOWLEDGE
PROCESSING

DT(C
Syracuse University ELECTENp

FEB 18 1988

J. Alan Robinson and Kevin J. Greene D

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

k -A

-J- 74-~L '%-WW W W~ W ~ "w I ---------

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service kNTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-87-165, Vol I (of three) has been reviewed and is approved for
publication.

- APPROVED: 64

NORTHRUP FOWLER III

Project Engineer

APPROVED:

RAYYOND P. URTZ, JR.
Technical Director

Directorate of Command & Control

" U

FOR THE COMANDER: .:

RICHARD W. POULIOT

Directorate of Plans & Programs

I
If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organilaticn,
please notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us ia

maintaining a current mailing list.

* Do not returrr copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

[~~~~~~...............-.-.........4"..........-....--...-.. ,..- -... ,,.-. ..- ,%, • ° . • - . - ° • . , -. , ° -. - - • ° -° % - ° o , - % - % ° - • • . ,

W- W, 1 0 W, W, W

UNCIASSIFIED
SECURITY CLASSIFICATION OF THiS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

1 a REPORT SECJRITY CLASSIFCATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

• r, 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
N/A
2b, DECLASSFiCATON 'DOWNGRADNG SCHEDULE for i re cc-- ist r ibI -o
N/A unI irA tid
4 PERPORMING ORGANIZATtON REPORT NUMBER(S) 5 MONITOR.NG ORGANIZAT!ON REPORT N ,MBER S

N/A RADC-TR-87-165, Vol 7 (of three)

6a NAME OF PERFORMING ORGA'~ZA;ON 6 Oi L SYMBOL 7a NAME OF MONiTORiNG ORGANVZA' ON
I,(if app/cabie)

,vracuse University (Rome Air icvcl,pment C'entr (I ()i:
6c ADDQKS :Cty, State, and ZIPCode) 7r AD'IRFS 'Cty State and Z'Co-le)

ryra,- : e .'13244 (riffis - 'b : I 1

%.V 7 0- ;',-)NG SPO'.SOP %3C R) S"MlOl 4 P' C"(' -
5v CAX ZA ON (If appicibie)

Rc i Air Development Center ,]]O0602-h L-<-))
rLB A:)DaFSS (ry State. and Code, 0 SOL CE ,'

, -riffis , .\FB NY 13<4 l-;7h0 ROGRAV IOcE(- T'A A .
i• ELEMENT NC) *O NT.,.J% ,

r.62711-'2 2 258
i, I E (Include Security Classfication)

.N4 ENERATION KNOWLEDC. PROCt]SS NC

i'= " ~12 PERSO',AL AUTHOR(S)

J. Alan Robinson, Kevin J. Greene

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REpOCRT (Year, Month, Day) '15 PAGE COUNTFinal FROM Dec 83 -o Jan 87 October 1987 8

' . 16 SUPPLEMENTARY NOTAT'ON

.N/

17 COSAfI CODES '£ -BJEC' TERMS (Continue on reverse if necessary and ,denif by block nimber)
F;ELD G ROUJP S i93C'< 7- Artificial fntelli ,, nv-e C;rAph edli(rinn

12 05 I .ogic Prgamn Comlhinator,;
, 'Fun('tion.41 Proornmminc . Prnorn mming l.AnWIlA9,,,,.

•9 AESSRACT 'Continue on reverse if necessary and identify by block number)

The main goal of thi; project was to design a high-levl proirammin , ,;vsten .i'h wi- ';
named SG'rEF, an acronym for "Syracuse T'niv,,rsity Parnilll i'xpre,,sin RtRducer") with two
parts: a _lanujae which would combine the ftinctional (as in LISP, SASl. or '1 1 with th-0 relati, irsl (as in PPOLOC) programming concepts into a single new paradigm am!. a machine
wh ich woould execute programs written in the langirg,,, ising,, reducrt ion and ,s mil tiprocessor
arch itec tIure.

The S')TE. language is an extension of the basic lambda-calciulus whi, h we call lambda pl is.
It is formally a collect ion of expressions together with some rl es and clef in it ions which
give- them meaning and make it possible to do deduct ive reasoning and computation with them.
The expressions of the SIEPR language fall into t-hree tain synitacti Sc tegor ius: a toms,
abstractions, and combinations.

(cont 'd on reverse)
20 DS7RiB,',ON AVAILABILITY OQ ABSTRACT 2' ABSTPAC' S[(

P '
v CtASS1ICA ON

S%C ASSIP ED UNLIMITED El SAME AS RPT DT IT (rSFRS I UNCI ART TI F 1
22a NAME OF RESPONSIBLE INDI!D(,Al- 22t [:FP'ON' (In(lude AreaCode) 22, 01'1 F SvMROt

Northrup Fowler III (315) 330-7794 RADC (COES)
D Form 1473, JUN 86 Previous editions are obsolete _ SECURITY (LASSFiCAT ON Of F-,:S PA(E_

DD~om 143, JN (NCLAS SI FT ED

% % % . % % %%," , " %", . ,- ,,% Jr*" ." Jt - "• ., .-. ,- t ." . '. ,' ' , W ' , ' , - ,,," " - ,.,, '" *, ""'- o' ' ,'

UNCLASSI F1ED

Block 19. Abstract (Cont'd)

Volume I describes the SUPER system, and discusses the conceptual backgrcand in terms of

which it can best be understood. In developing these ideas over the period of the project

we devised and implemented two related single-processor reduction systems, LNF and LNF-

Plus, as experimental tools to help us learn more about SUPER language design issues.

These systems have turned out to be of considerable interest and utility in their own-right,

and they have taken on separate and independent identities.

''Volume 2 contains a detailed presentation of the single-processor software programming

system LNF which was developed to serve as a test bed and simulation tool for the

classical" part of the SUPER system.

Volume 3 presents the final, enhanced version of LNF, which we call LNF-Plus and which

P. provides the user with as close an approximation as we can achieve on a single processor

of the SUPER system. Volume 3 is also designed as a useful guide to someone who wishes

to use the system for experimental computations.

.C.

Sii

I K

1A-

* UNCLASSIFIED

- i,:"W ' : : - ''. "

Wkj sIi 4W er

%
-de

CONTENTS OF VOLUME 1

CHAPTER 0 INTRODUCTORY REMARKS 1

CHAPTER 1 THE SUPER LANGUAGE 11
"-.,

CHAPTER 2 GRAPH REDUCTION 30

CHAPTER 3 THE SUPER MACHINE 43

CHAPTER 4 RELATED WORK 69

REFERENCES 70

- ,,i

.
..,.%

? SH

CHAPTER 0. INTRODUCTORY REMARKS.

This is Volume 1 of a three-volume final report on a project entitled "New Generation

Knowledge Processing" which began on 6 December 1983 and ended on 31

-K December 1986.

*Goal of the project. The goal of the project was to design and develop a high-level
programming system (called SUPER, for Syracuse University Parallel Expression

Reduction) consisting of two parts:
0 a language with both functional (as in LISP, SASL or ML)

and relational (as in PROLOG) constructs;
r a machine to process expressions written in the language,

using reduction and a multiprocessor architecture.

SUPER and LNF-Plus. As an experimental tool and test-bed to help us study SUPER
design issues we developed a single-processor reduction system, LNF-Plus, which
turned out to be of considerable interest and utility in its own right. LNF-Plus is a
single-processor reduction-based implementation of the SUPER language. In order to

emphasize and praserve its independence LNF-Plus is documented separately in the

second and third volumes of this report. Volume 2 deals with LNF, the purely
functional programming subset of LNF-Plus. Volume 3 discusses the relational
programming features which extend LNF to LNF-Plus, and provides the necessary

"how-to" instructions which enable a somewhat experienced Lisp Machine user to
begin interacting with LNF-Plus.

Volume 1 contains, following this introductory Chapter 0, three main chapters. Chapter

1 discusses the SUPER language. Chapter 2 explains graph reduction. Chapter 3
presents our ideas for the SUPER machine. These call for a fine-grained parallel

machine architecture consisting of a large number (millions) of identical small
processors ("nodules") linked by a dynamically variable connection network (the0.

W"postal system") enabling the nodules to act as the nodes in a graph representation of
W1

P , ' % ,/ ' 4'a . "a~ " V' a. ""' ' ?,, ."" ',~~~~ ~~ A,_, ." A..-. , ,. , ,. .%.

a SUPER expression. The collective behavior of the nodules effects the reduction of

the expression to normal form.

SUPER and LOGLISP. The immediate precursor of SUPER was LOGLISP

(Robinson and Sibert [24]). The goal of LOGLISP was to design and experimentally

implement a programming system in which both relational and functional styles were

supported. To some extent this was achieved, but in a rather awkward way. The

awkwardness was traceable to the fact that the relational programming part of

LOGLISP was no more than a kind of patch grafted onto an existing LISP, so that

LOGLISP is simply an old language with some modifications. SUPER, on the other

hand, is a new language designed from scratch to meet the same goal. It is a natural

" successor to LOGLISP. Indeed, it is a second attempt to reach the same objectives.

Thus programming in SUPER, as in LOGLISP, is meant to be a generalized kind of

*l logic programming which subsumes both relational programming and functional

-" programming.

We do not attempt to persuade the reader of the advantages of the relational

programming style based on the Horn clause resolution subset of the first order

- p ,,dicate calculus. This has been well done both by its many proponents (especially

by Kowalski [20] and Clark [7]) and by the practical success of PROLOG.

Nor do we try to make the case for the virtues of the functional programming style

based on the h-calculus. This has been already achieved not only by its many

* advocates, notably Landin [21], Burge [4], Turner [28], and Henderson [15], but also

by the great practical success of LISP. Of course LISP is not a purely declarative

X-calculus system, since it contains several imperative control features. Nevertheless

LISP has pioneered the trail for later, purer -calculus-based programming systems

(including certain versions of LISP itself, such as SCHEME [26]) and has introduced

several generations of programmers to the power and elegance of the functional

programming style in which functions are dealt with as first-class objects on a par with

2

% % % 1.- .% %

~A~Y.~1 A-

numbers, truth values, strings, and the like.

Our main purpose is rather to justify our view (as was attempted earlier with LOGLISP)

that relatioi,. , and functional programming need not and should not be kept apart in

separate systems but can be smoothly integrated within one homogeneous linguistic

framework. The following discussion gives some motivation for this view.

What does PROLOG do? There is a nice intuitive version of what PROLOG is actually

doing, as it looks for answers, in a world described by a given sentence P (its

"program"), to the query

0 - ExC(x).

According to this version PROLOG is attempting to find a counterexample to Q, namely,

a way of interpreting the language (relation and function symbols) found in P and Q

* such that P and (not 0) both come out true.

Note that not Q is the proposition

Vx not C(x).

Now in the event that Q is a logical consequence of P, the attempt to find a

counterexample to Q will automatically generate one or more barriers

Ai because Ri

in which Ai is an answer and Ri is a proof of C(Ai) from P. There may even be infinitely

many such barriers. Any one of them is enough to bar the proposition not 0, that is, to

show that Q logically follows from P.

Proofs = computation traces. PROLOG users think of the various barriers individually,

as the different results of many (small) computations caused by the submission of ti,

query Q in the context of P. However, only the answer Ai in each barrier is actually of

immediate interest, while Ri is simply the Oustification of that answer. Thus a PROLOG

transaction has the overall form

3

% 0

P. . J* P %

user P

machine ok

user is there an x such that C(x)?

machine yes: x = A1

user why?
4.

machine because R1

user any others?

machine yes: x = A2

user any others?

where the sequence of requests for further answers may eventually end with the

exchange

user any others?

machine no

or may continue indefinitely (because there are infinitely many answers). The machine
may even silently pursue its search for "one more" answer for ever in vain, if there are

no more answers but no way of knowing that this is so.

How does that work in LOGLISP? LOGLISP users, on the other hand, think of the at

of barriers

{ Ai because Riji= 1,...,

collectivyely as the (only) result of the single (large) computation caused by the same

submission. Thus a LOGLISP transaction typically has the following overall form

user P

machine ok

user what is { x IC(x) ?

machine it is{ A1 ,..., An0

Z." , "." % %,' , ', - , .,, , , "' ", -.. ,, ... , ,, , .. ., . ., ,... .,.%. %

user whyA ?

machine because Ri

when there are only finitely many answers (and in the special case that there are no

answers the empty set { } would be returned). If there are infinitely many answers, a

LOGLISP interpreter cannot (of course!) finish computing out the explicitly listed set of

them all, and instead might be arranged to respond

machine it is {A 1 . An } B

where B is a "remainder" expression describing the (infinite) set of remaining answers.

Proofs and traces normally needed only to remove doubts or locate errors. The proof

(or justification) cornpon-nt R in a barrier (A because R) is the analog, for a logic, !

computation, of the tra. of an ordinary computation. As such, it is not norma!ly want(-:

as part of the output, but is held in reserve in case the answer component A shouic u.-

thought to need justification. This could be very important, for example, in the case of

an expert system whose answers are either costly, or risky, or in some other way call

for a supporting rationale. As we shall see, in the SUPER system as we presently

envisage it, the proof components are not preserved and hence are not available to the

user. This is because the SUPER process of reduction is "inhumanly" parallel in

nature and its mere history would in general be of little use as an epistemological

crutch.

Point of computation is to get output or to achieve effect. In general, the purpose of a

computation is to obtain an output (or to achieve some effect, an output in a broader

but still legitimate sense). Our reason for doing the computation is not normally to get

its trace. Similarly, in logic, the main reason for doing a proof is not so much to have

the proof itself as to be properly convinced of the truth of its conclusion.

Constructive proofs as natural source of outputs. A proof may or may not be I
constructive in character. A constructive proof is one which a construction is supplied

5

% %

.4. %~a# a~w c,~~ ~ , p

Tor any object which is asserted to exist in the course of the proof. A nonconstructive

proof that a certain kind of object exists is an argument which manages to convince its

user of this by indirect means short of actually constructing such an object. Whatever

their desirability in mathematics may be thought to be, constructive proofs are

absolutely indispensable in logical computing. But we value the constructive proof

less because it is a proof and more because it provides, as a side effect of its main

task, an answer to the query we submitted.

Logic programming. Although the phrase "logic programming" has corr2 to be

associated mainly with PROLOG and its underlying Horn clause resolution logic, the

concept is a more general one and can be discerned, for exampe, in LISP, SASL.

and KRC. In those systems, however, the underlying logic is different. It is the equality

"Q~i of "substituting equals for equals to get equals" combined with that of abstracting

*and instantiating syntactic patterns using Church's lambda notaticn.

- Definitions, axioms. The assertions in a logic program are often thought of a,

definitions, or axioms. But we can also think of a functional program in the same way.

. Fc. example, the equation

factorial = (Y Xf .n if (zerop n) then 1 else (times n (f (subI n)))

is t-!cught of as defining the tactorial function, ac- indeed it does in the sense that, with

this equation and the equations

YF = F(YF);
, if true then A else B = A; if false then A else B = B;

* zerop 0 = true, zerop 1 false; zerop 2 = false; etc.,

,0., times = .m;n if (zerop m) then 0 else (plus n (times (sub1 m) n));

plus = ?,m?'n if (zerop m) then n else (add1 (plus (sub1 m) n))

0., (add1 0) = 1; (add1 1) = 2; (add1 2) = 3; etc.,

(sub1 1) = 0; (sub1 2) = 1; (sub1 3) = 2; etc.,HI as axioms, the beta- and delta-contraction rules allow us to make deductions like

*' .i (factorial 13) = ... = 6227020800.

6

, rP,

% 4. -4

Of course, in practice we cannot actually store infinitely many defining equations for

addi, sub1, zerop, and the like, and instead we simulate this by suitable algorithms

based on the positional notation for the numerals, and we normally treat the functions A

plus and times in a similar fashion.

Function calls = theorems to be proved. Within this general logical framework, ther " -'

is possible to explain (and indeed, to execute) fu....ion ca:!s - like the cal

. (factoria! 13) I
c t the nq ,- ,- .' i; r, r -il -,r

.t.;'4 . ~ eO~os r[

. .," cu not th n of it >.-_- - p.,s .. -,. lt de.,;ct cn, 'mr_ . ..t[..- ru ;r~ - -
r

I ' I

theorem proved above is the pquat',Dlr"

(factorial 13) = 6227020800

a nd the proof is the entire trace of t-e computation of the output 6227020800 fror te

input (factorial 13). We can also think of the entire computation as a constructive proof

of the general theorem (query)

there is an n such that (factorial 13) = n

and the computation simply a response to a user's request to prove this prop.osiion.-:

The proof is made, and, being constructive, carries along with it the support in?

construction that n = 6227020800, which provides the output. The prcof itself is

discarded or ignored In fact in this example, which is of course theoretica! c.r'c

pedaqogical, the pure proof is an enormously large thing because of the P.:a"

treatment of arithmetical functions and predicates. If wa build these in and

algorithmically exploit the positional notation for the numerals in the usual way, tl-e'-

intermediate steps involving such function calls as the expresslon (times 7 720) wcu'd

be immediate, one-step transactions as if the equation

(times 7 720) = 5040

were one of the exioms. I
7

jI
%.---

- % -.l- % 1

Outputs = supporting constructions. The idea that in such logical reconstructions of

computations the outputs are obtained from the supporting constructions of proofs of

propositions in existential form is a basic one in our view of general logic programming

in all its varieties. Functional programming, as in LISP and all its lambda-calculus

based cousins (SASL, KRC, ML, even APL, et al.), is no different in this respect from

relational programming, as in PROLOG, where this aspect of the logical reconstruction

is much more obvious (being hardly disguised at all). PROLOG's origins in mechanical

-, theorem proving are very much worn on its sleeve. In our efforts to develop a uniform

concept of logic programming which comfortably fits both the LISP-I'ke and

PROLOG-like paradigms, we have found that it is the "denotation preserving" scheme

of equational deduction, or reduction, for short, which serves best to capture both. If we

regard a PROLOG-like computation as a succession of transformations applied to a

series of set expressions, without changing the set denoted by them, we have the

* same basic paradigm as in the LISP-like case. So we think of PROLOG-like

computations as

{xIC(x)} {A 1. An B

with the "remainder" B often being the expression { } (in case of finite set outputs) but

,n general being an expression capable of more development (possibly infinitely much

more) by further transformations. This change of viewpoint can be made smoother by

following the suggestion of Keith Clark that the set of n definite clauses in one's

program which collectively define a given relation symbol R - in the sense that 'heir

conclusions all have the form R(tl...tk) - can be reorganized into a single equational

definition of R

R Xl x... xk) (Gl or ... or Gn)

"K that is to say (equivalently)
.' V (Xl...Xk) [R(Xl ... Xk) iff (Gl or ... or Gn)] *

where each G1 expresses the content of the ith clause as follows. If the ith clause is

AV (y"...ym)if (M1 and...and Mq) then R(tl...tk)

then Gi is

-8

T .. "0..0

e01

, w-r-' r , . vr . w W' x. , w' - , :-.. J. - - 4 .' , - -.a .M1 an

3 (Y,..Ym) (Xi= t and ...and xk=tk andMand...andMq). (*)

Clark's idea is called "completion of the knowledge base". This is because, strictly

speaking, the conjunction of the n clauses is logically equivalent not to () above, but

only to the weaker assertion

V (X1 ... Xk) [R(x1 ...Xk) if (G1 or... or Gn)]

with merely the if, rather than the stronger iff. The stronger assertion (*) provides a

means of ir'ferrina reoated R-sentences, since (') i logically equivalent to the .,

*., assertlon

1 kx.. .X notF x1 .. Xk) iff (notG1 and ..and notGn)

v,'-ere each compo -et not,] of w'rose right hand side is (negatinq (") above)

v (Y . n) if xj =t, and ...and xk=1k) then not (M, and ...and Mq).

This shows that in order to prove notR(xl...xk) it is necessary to prove r d "-tIct,

universally quantified theorems. This is why the "negation as failure" principle in

PROLOG is so full of subtleties: the proof method used in PROLOG is in general not

designed to prove such theorems.

For the purposes of our present discussion we do not need to pursue this point further.

We are interested only in the idea of defining a relation R by means of an equation

R = '(Xl...Xk)[G 1 or...or G n]

just as we define a function F by means of an equation

F = /(Xl ... Xk) B.

It is this idea which makes it possible for us to combine relational with functional

programming in the SUPER language and reduction system.

SASL, KRC based on reduction; LISP should be but is not. David Turners well known

functional programming systems SASL and KRC are reduction systems. 1his means

9

that they are logic programming systems based on the idea of proofs as equational

deductions. The user types in an expression A as input, and after some work by the

machine receives an expression B as output. The machine has reduced A to B, and

thereby (as a side effect, so to speak) proved the equation A = B. The idea of

reduction is of great importance but is really a very simple one - far simpler than the

elaborate alternative idea based on denotational semantics and evaluation.

01

A'

%,

" , N ..

4.,M r .K i r iKrAI~-rW WT C

CHAPTER 1. THE SUPER LANGUAGE.

In this chapter we review the general logical background and underlying principles of

the SUPER language.

The SUPER language: expressions and contractions. The SUPER language contains

both the predicate calculus and the X-ca!culus. Formally, it is a collection of

expression, together wit'> some (rfr.m) conventions which give them meaning annd
some (,,,m,) inference rules, ciilied contraction_, which make it pos:tL- to do

deductive reasoning and computation with the expressions.

A SUPER express io is either . o cr an abstractiojn, or a comLnation. F.v ry

expression has an .aily, which is a nonnegative integer.

Symbols. Symbols are words of one or more characters; for example
i,

not, and, or, some, true, false,

S, K, I, Y, 34, -23.6, plus,

x, y, zorro, a, banana, P, QUERY,

are symbols. It is part of the definition of each symbol that it is either a function symbol

or a relation symbol, that it is either constant or variable, and that it has a given arity.

SConstants are written in bold style. Variables are written in plain style.

Abstractions. An abstraction has a bound variable, which is a variable, and a ._0., B,

which is an expression. Its arity is one larger than that of B.

.Combinations A combination has an oerator F of positive arity and an operand A,

both of which are expressions. Its arity is one less than that of F. If F is an abstraction

with bound variable V then the arities of V and A must be the same.

Sr1

-~ -p

0od

Free and bound occurrences of variables. An occurrence of a variable V in an
expression E is a bound occurrence of V in E if and only if it is in a subexpression of E

which is an abstraction whose bound variable is V (and otherwise it is a Lrp

occurrence of V in E).

Abstract vs. concrete syntax. T,. above syntax is abstract: it does not specify any
'particular concrete representation for expressions, and is in fact compatible with a wide

variety of particular ways of writing or representing them. We will be concerned with

two main ways of representing expressions: as strings and as graphs.

String representation. The string representation of an expression E is defined as

follows:
5'

if E is a symbol then the string representation of E is E itself;

*,,:' ,,.'

,-if E is an abstraction with bound variable V and body B, then the string

representation of E consists of the lower case greek letter X, followed by

the symbol V, followed by the string representation of B;

* * if E is a combination with operator F and cperand A, then the string

representation of E consists of the lower case greek letter x, followed

by the string representation of F, followed by the string representation of A.

S There is in addition a wide variety of "sugared" (Landin [21]) ways of writing and

displaying expressions, all representing the same underlying abstract syntax. ForF:, example the "beta-redex", whose string representation is

, •,, oXxB A

can also be (and most often is) written

N (XxB)A

without the a, using juxtaposition, supplemented by parentheses if necessary, to

12

°O-
%W. . -. _t_ % . .%r w ,r ,_,. .. _ , _ . . .). - . - . - - -. ,

' ~ ."" " - - '" "","- " " " W. , . " ,

- - - - - - -

V indicate combinations; but it can also be written in the let notation
let x be A In B

and in the where notation

B where x = A.

Thus uxFcxGX can be written as F(GX), and cxQxFGX as (FG)X or even as FGX

* (following a convention of "association to the left"). Since iterated combinations

(combinations whose operators are combinations, etc.) are common we shaH often.

w.rite- , as aii abbreviation for a successio:n of n a's. Chapter 3 of Volume 2 du~

the many such, "sweetened" syntactic variations which are ren7ognized by t

Graph representation. lris:C:2 - SUPER ma:onhne, and 1r, the LNF-F [us n

*expressions are repms en'ed b)y ,co)ted dij rcted graphs--,, silar to LISP S-expre--F

which may have both conf~uences ("sharig" and cycles, and may ever c

redundant nodes inaccessible fromn the root ("garbage"). These graphs arc- dcjisc-

in more detail in Chapter 2 and Chapter 3 of the present volume, and thrcughoA.,

Volume 2.

- Logical constants. Certain constant symbols are called logical constants and have a

fixed role in the language. The following logical constants are relation symbols:

symbol arity

true 0
false 0
not 1
and 2
or 2
equals 2
some 2

13

% , % %% %

5

Other constants. There are the constant relation symbols: "

symbol arity
--

less 2
greater 2
pairp 1

the constant function symbols:

,, symbol arity

if 3
numerals 0
sum 2
difference 2
product 2
quotient 2
head 1
tail 1

,-

and the list-structure function symbols ("constructors"):

symbol arity

pair 2
nil 0

Expression structure: heads and arguments. The string notation is especially useful for

revealing certain structural features of expressions. Every expression E has a structure

which in the string representation has the form

E = xmHA1 . Am

for some m > 0, and expressions H, A 1 ... Am such that H is not a combination and

has arity > m. H is called the head of E, and A, is called the jth argument of E. Clearly, if

m = arity of H then the arity of E is 0. Since H is not a combination it must be either a

symbol or an abstraction.

14

%,%

;r :.,.C ..-;. '- , ,.,, .-..-,...•.., ,... •.-....-......... ,....,:, ,.,...-..-.. ,-.-.,,, . ., ,..:,..A .,.,,,.

Predicates. Sentences. A symbol is a predicate if and only if it is a relation symbol. An

abstraction is a predicate if and only if its body is a predicate. Predicates of arity 0 are

sentences.. The general idea is that if P is a predicate of arity n then all O-ary

expressions of the form

rPAnA A n -

are sentences, and conversely tnat every sentence is a C-ary expression of that form.

Notice that 2 particular the !cgica' crnstanti true and fa!se are ser'tences. Ti, ar,

exprcsson. m ht L,, 0u" "- n t.... s.es et rSuot ,p-rc rpria i

example, the expression u xplus true 3 s a well-formed expres-on as far s

are concerned but lacks semantic significance (unless we extend the definition of plus

beyond its customary domain). zi

The combination (12some n P is a sentence. It makes sense only if P is an n-ary

predicate, in which case it expresses the proposition that P applies to at least one

n-tuple of things. Intuitively, ox2some n P expresses the same proposition as the more
familiar formula 3V...Vn(P VI...Vn), where V1...V n are any n distinct variables not

occurring free in P.

Tuple notation for abstractions and set notation for predicates. An abstraction whose

string representation is

z 1. . . ?XZkB

where the zi are distinct variables. may also be written 7n the "tuple" notation

X(z . .. Zk)B

15 A

%::%

%'

and if B is a sentence, the abstraction (which is therefore a predicate) may also be

written in the "set" notations

{ z k) I 8 1, setof (z. . Zk) B.

Sets and predicates considered the same. The SUPER language does not distinguish I
between predicates and sets. It treats these notions as alternative but equivalent

versions of the same notion. However, for reasons which wil become clearer in the

sequel, we will make "official" use of the alternative setof notation under certain

circumstances.

Conjunctions, disjunctions, negations. The sentence true is (also known as) the.

N empty coniunction. A nonempty coniunction is a sentence of the form

cc2andA . I *:2andAntrue

for some n >! 1, where the Ai are sentences, the coniuncts of the conjunction. If n = 1
. ojntondsucins eain.The sentence false is (also known as) the emt .,ntin oept iinto

'"ept ojucin onmt .ojncinis a sentence of the form

cc °"l- c o~ fls

'* or some n >! 1, where the Ai are sentences, the doiuncts of the disjunction. If n 1 :

the conjunction may be identified with its (only) conjunct.

The sentence false is (also known as) the empty disjunction~f. A nonempty disjunction

is a sentence of the form

ao 2rA1 . .. cx2orAnfalse

for some n > 1, where the A are sentences, the disiuncts_ of the disjunction. If n = 1 the

disjunction may be identified with its (only) disjunct.

Anega.,on is a sentence of the form

I notA

where A is a sentence.

Existential quantifications. Sentences of the form oW2some n Xx....XnB may be written

Bx1...XnB.

16

- _OV. ~ ~ *" *' * 9NW '4

0 p.'Pp *~*~~, M

%

IZ

Atomic sentences, equations, terms. Consider a 0-ary expression E of the form

COnHA 1 .. .A n

for some n > 0, (where the head H of the expression is therefore n-ary). When E is a
.,5

sentence we shall be particularly concerned with the case when the H is an

abstraction, or a symbol other than and, or, not, or some (that is to say, with sentences j
other than conjunctions, disjunctions, negations and quantifications). E may be

written as the "term"

H(A,. .. ,_A)-"

When its H is not an abstraction (and is therefore a symbol) E is cailed a- atc i,10

exoressic , and if E is a senteince, an atomic, sentence. When in patltcular n = 2 a:,, H

s the ccnstant equals, E is also calleu an . _

An atomic expression c 2HAB whose head is 2-ary may also be written in t '

notation
:-", AHB

(writing the head between the two arguments) and in particular an equation may be

written

A=B.

X-normal form. A fundamentally important notion in the theory and applications of

SUPER is that of XL-normal form. An expression is said to be in .-normal form, or to be

a h-normal expression, if it contains no subexpressions of either of the following forms:

• cckVBA (a "beta-redex")

* XVcaMV (an "eta-redex")

where M is an expression not containing free occurrences of the variable V. An

expression which is not in X-normal form can often be transformed into an equivalent

X-normal one by persistently applying the operation of %-contraction (see immediately

below) until no redexes of either kind remain.I 17

% %A

'ii X-contractions and X-computations. For every beta-redlexI
xcXVBA

there is a corresponding "beta-contracturn", namely the expression obtained by

substituting the expression A for each free occurrence of the variable V in B. For every

eta-redlex

XVuCMV

there is a corresponding 'eta-contractum", namely the expression M. A X-contractiond
operation can be performed on any expression E which is not in X-norma! form, by

identifying a set of occurrences of beta- or eta-redlexes in E and replacing each of

them with an occurrence of its corresponding contractumn. Since in general a

non-?,-normal expression may have n such redlexes, it may be X.-contractedl in 2n ways.

A h-computation startina with E is then a (possibly infinite) sequence

E", E2 . .

of expressions in which E1 is E, and each expression after the first is obtained by

Jt

h,-contracting its pred-ecessor. The X-computation is complete if it is finite and its last

eypress;oh is ?,-normal. All complete 2-computations starting with an expression E end

with essentially the same expression, which is called the X-norrnal form of E. Th 7,

means, roughly, that we obtain the X-normal form of E by choosing successive

X-contractions in any way we like, until no further X-contractions are possible (th.e

Church-Rosser property). More exactly, we have to make the choices so as to avoid

nonterminating computations. This can always be done, provided that a complete
q computation exists, for example by always contracting the leftmost redlex in Ei to get

E+1 X-computation is an example of computation viewed as the reduction of
expressions to normal form.

18

% %e
I, M

,£, ".

Normal forms In general. A X-reduction machine is a machine which accepts an

expression as input and returns its X-normal form as output. Presumably, the

machine's design is based on some particular algorithm for systematically constructing

a complete h.-computation starting with a given expression as input (say, the leftmost

redex algorithm mentioned above). In this report we discuss a somewhat more

complicated reduction machine, which carries out SUPER-computa*ions rather t-,"
A

t..computaions. SUPER-computations involve 49 oinds of red, contracion, " wI e

splayed in F"gure 1. One of them (number 1 ist but be.a-cr I
nota. in ts p!nce are contractiors . 1 t ' O ... c. c c c ' ,

t1 e same effect.

19"

%.%

.4

.'.

* ¢.4

%,. * .* 4. c ,'.' *./*- *-t- -"*---* 4'.- - - '.4 '. * *'. 5" .'*.. '. . .'..'.... "'*

Wi~fl IL W--U .W T- rar .ra-. Ful -7 J - - -

REDEX CONTRACTUM REMARKS
1 Xx(F x) F x not free in F
2 Xx(F xi W)LxF x free in F
3 kxx I
4 xC KC x not free in C5 Cx(FA) S XxF ,xA x free in both F aid A
6 Xx(FA) C XxF A x free in F but not in A
7 Xx(FA) B F XxA x iree in A but not in F
8 CFXY FYX F nct of the form (B C D)
9 C(BFG)X FG X
10 .WFXY W(FY)X
11 BFGX F (G X) G not of the form (B CD)
12 BF(BGX) B FG X
13 JBWFGX W(F (G X))
14 ZWFGX W(FX) (G X)
15 S(BFG)X r2 FG X
16 SFGX (F X) (G X) F not of the form (B C D))17 KXY X

18 IX X
19 WFX FXX
20 YF F(Y F)
21 head (pair A B) A
22 tall (pair A B) B

, 23 palrp (pair A B) true
* 24 palrp X false X not of the form (pair A B)

25 sum n m the sum: n + m n and m both numerals
26 product n m the product: n x m
27 difference n m the difference: n - m
28 quotient n m the quotient: n - m
29 less n m the truth value: n<m
30 greater n m the truth value: n> m n and m both numerals
I" and true X X
, 4nd false X false

* 33 or trueX true
34 or falseX x
35 not true false
36 not false true
37 If true X Y X
38 If false X Y Y
39 equals X X true
40 equals X Y false X and Y distinct constaits
41 equals FA GB and (equals 0) 'equals A r3) F, G both ccnstructions

*42 and (or A B)C: and C (or A B) ora (and A C) (CandQ or (and C A) (and C B)
43 and (and AB) C and A(and BC)
44 or (or AB) C or A(or BC)
45 and A (and (some n Q) B) and (some n 0) (and A B) A an atom
46 3xi..xmA A A is one of true, false
47 3x,...xm(orAB) or (xi- . .xmA)(3xi... xm B)
48 3x, .. ixm(and (some n 0) B) 3xI .. XmZ 1 ..Izn(and (a z1 ... Zn B)
49 3x ... XmC 3x I...X. X1 xi+1 XmC, C is a conjunction w , one

of (equals xiT), (equals T x,)
as a conjunct, and C' is C

with T for x i everywhere

0 FIGURE 1

20

'IIV

NK,~

Ur.WW WWW.W. ,r- r.p. t~fT W 1 W v - ~ C ''V u w-,Z.

The SUPER machine, underneath all its various trappings, is just a redex remover. Its

repertoire consists of the 49 redex patterns shown in Figure 3, each one with its own

W,: characteristic contraction. The SUPER machine's contraction algorithm is simple to

state but complicated to perform:

to obtain E+1, identify aL red exes in Ei and contract them.

This is known as full, contrictic and represents the maximum rate of reductien that IS

logically possible.

To expain the SUPER la - gn, then, we must discuss the sp contract;D.: a.

"descr~be their i;>,ended joirnt ' / -

Delta-contractions To o.giv .vth, tlre arc many redexes typifed by -rithmeto
'h t,,- r L °a y rd x y iid b

0.7 logical expressions such as

sum 54 653, and true false,

whose corresponding contracta are constant symbols; in this case,

707, false,

by contractions 25 and 31, respectively. These redex patterns are all traditionally

classified as "delta-redexes" (this greek-letter terminology is due to Curry).

The general idea is that a delta redex is a O-ary combination

cnFC C

whose head F and arguments C 1, ... , Cn are all constant symbols, and that there is

an associated algorithm to construct a constant symbol C as its corresponding

contractum.

S !.Constructors and data structures. Expressions in normal form are by no means always

single symbols. The example of traditional numerical computation (which usually does

end in a numeral or a truth value, the "result" of the computation) is not typical. For

example, if we compute the inverse of a matrix, the result is a matrix, and this is an

21

SI

% . . ,- .% • .' -. .. -. -. -. *.° .% -. -. ".% . ". - * " % ,% % % " " . " %, "..
. -% .,

expression more complicate(I thain ai shigle nUmeralj, or scaLY. SIrnhanrlv,

SUPER cemputa!!ien milht end wItan iWfl2ncr. & Th aC"?

Howvever, (by dnhn~~' :.~-Y ' ~

F: ~~ rp t 1 h ti (~o~aQu: nrn;ue.'u >

s; o to 9S.D;! ak, c cK r- q o, i nm 2 t ha!t - c:! f a ehrce~~r:

abra~ 'ar.rireCorsai ybs tor examlple. the(:, 4ioe'rs't i

'3 an : vi '1ose e muulement is 23 is 0.qrah ith ~eae

[6 231

* and is in raw SUPER the comiblna-tion

4t pair 6 c2 pair 23 nil

* '~h ccontains n3 redexrs Iti Ea d:I'o> '' -ary -o~mn air '7)o'>

J"

calu a 1 oon. quorrthrthan'~r, lc 31eV c 7i Wiwrnon ~2c~.

of PEn omptto getnmi fal UE oeo.T

Of the SUPE .4'aj ,W lw U- o krce ttoc!,rkiic frd x

whc utb betfo n xrsini rorta t hUdb U E ,)m'I

namey, hos of~ cn rcin 41truh4.I iAhs7e ann cnrcin hc

I an22

"4 constitute much of the novel aspect of the SUPER language. In order to understand

them we must next examine in more detail the structure and meaning of Horn
predicates.

Goal clauses and Horn predicates. A goal clause is a sentence of the form

:1 I II...XkC

where k 0, the x, are distinct vriobes. and C is a conjunction whose conjuncts (if it

*.-'- is nonem: -are all atomic sentences. -Vh<-, k = 0 then we omit the symbol -I)

A Horn cmidcct7 i a prtcd~ca'e of thj form

... . .) D

,,',where the z, are d.t,,,. variab;. ; and B is a disjunct'on whose d >,ncts. '

S-nonempty) are all goal clauses.

For example, the following is a Horn Predicate:

X(a b c) (or (and (equals a nil) (and(equals b c) true))

(or 3 x y w (and (equals a (pair x y))

(and (equals c (pair x w))

(and (append y b w) true)))

false)).

SUPER's equivalent of PROLOG's Horn clause definitions. In the SUPER system, in1

order to define a k-ary constant R as standing for a k-ary relation in the manner of

PROLOG or LOGLISP, one asserts a "Horn equation"

R = (z 1. .. Zk)[G, or ... or G n].

(In LNF-Plus one gets the same effect by a different transaction: see Volume 3, 3.2

23

- -. ', , ?,,i '"_. -z :. sr-. ,, -. t. ,-,
TM

.'% ' A AA',. A .A ,, ,,A,. -A . 'A , .- , p , - , A . -A -" , .. A'. * ., .. . :-- - ,-:- .. .- ,- . -, '-.-.N."A"pA,r-pAA " . ," "% - ". *>. , A A. *A" '-" " 'A... ,.-"' . A.*., - * - ' .'-* ',-.". .,'A".-v,..'* .-.

V. ~Horn Clauses for how !t s actually done at thie L NF -Phus trra)

ft..t

R (A

MSaepe iaei 1-orl.Iinsy b lFbe eiedb h bv c

22

% %%

%
A. LA

% %.

equation. (B and C are conjunctions of atomic sentences).

" Then the contraction of the redex R to R, followed by the further contractions which
q *apply R to its arguments", transforms the goal clause (*)to

' .:. 3 yi ... yn (B and (G ', or ... or G'n) and C)(*

where G' i is the result of substituting A .. .Ak for z ... zk in Gi, i = 1 ... , n. Ncto that (*)

is no longer a goal clause: however, it will be transformed to a disjunction of goal

clauses under the pressure of the SUPER contractions 42 - 48. Namely, contraction 42

will "push and's throu.h or's" tc cuse **) to K-corne

,, By, (B and G', and C) or ... or (B and G, and)
V !

arid contrac i.on 47 v .psh 's thro !"s or's" to ca.use it to b ;come

.m ..."Yn(B3 and - 1 anc) or... or -y1.. .y n (Band G'and C).

Finally, the existential quantifier prefixes of each G', will be pullec oi.tside tie aic

contractions 45 and 48, to yield

3y1 ...YnWl1 ...Wk1 (B and H1 and C) or ... or 3y. ... wl..Wkn(B and Hn and C) (**

where Gi is wl...wkiH i. The expression (***) is a disjunction of goal clauses.

This overall transformation of (*) to (***) corresponds to using each clause in turn in the

PROLOG or LOGLISP definition of R to eliminate a goal from (*) when it is an atomic

sentence R(A1... Ak).

We next discuss how to eliminate a goal in a goal clause when it is an equation. It is

this kind of goal predicate which we introduce when we perform goal elimination in

the way just described.

The elimination of equations from goal clauses. We consider a goal clause having

one of the forms

25

P.)% %... %.
.- %

~rv1 arvl T and C7

Ex -Y i*rlo

apen

kor ta d.4al
.

il a d eq sb c)t u)

44

(and (equals c (pair x w))
(and (append y b w) true))))

false))

The introduction of this definition corresponds to asserting the pair of Horn clauses

Vx((append nil x x) -

Vx,y,z,w ((append (pair x y" z (pair x w)) *- (append y z w)).

The del.:niens reduces to the expression

S S tIB S),(R (5 or, and (C equals nil' Q C. and) equals tru-))
(C ,C .8 (Q somre 3)) S C iB BQ (0 , S 8)) k

3 and) equals) pairq
(C_(C B;,,' P_'E3SB 7j: d, equcss pair)1))

(-id>)C append) itue'

W JcCh we wi;I abbreviatc as APPEND. Thus we have introdu& 5;(d a new c
effect: but see below), whose redex is the constant "append" and whose cortf,.-;rn i-m
the expression APPEND. This new contraction will cause any atomic sentence of the
form

(append a bc)

to be transformed first into

(APPEND a bc)

and thence into

(r(and (equals a nil) (and(equals b c) true)) (or (some 3 E)false))

where E is

(S (11 (_S B) (a and (equals a)) pair)
(~B (B S (11 and (equals c)) pair)

(and) (C append b) true)))
27

%0V.
V.~ ~~~~~~~~ % r--,- . %rw%~~

which is the normal form of the express;on

"x .y;,.w (.and (equals a (pair x y))

(and (equals c (pair x w))

(and (append y b w) true))),

Tnlms th a:om:c sent ne (append a t C) " a , : I ",...

Li disjuncts.

.4.

""'"IC 5

.t
A

0

~~~setof (p;,(or ,and :equ;-lIs p ri! an !t a., ,-vr I'ar"ri r e

,' or f.'and ,equals ; pair nil , ,1t c Jals (- ,p', T ni! true

' '-, ,or 'land keq aLOs p pair I .pair nil, A,-nd oqu6 ,s , nil Tnr r false

~~~~which can 'hen be suj,-red' o-;,t .l.uyt, . t . ,:u .

! : { (1 2]) [1 [211 (1 21]

2.

, ' . , , _ , , , . . ,.
---p. % " " " ' ° " ' " • " % % " " % % " " " - - " " ' " " " ' " " " ° " % "

%
"

1-% " . " " ° * o " - % • . " • % % ' . • o . . " - - % • % . . . , • " o • ° . '. % % " ,

% % " % % % %•°.° % % , • ' ".C •.. °,% [,° .°r:C,'. " , """r. . ". '-. """% . " °.' . % h . "." %

*- ~or whatever other surface syntax may be preferred. As can be seen, the final raw
SUPER expression contains no redexes and is a "solved" Horn predicate: one whose
disjuncts contain no existential quantifiers and whose goals are equations giving the

components of each "solution". The use of the setof notation instead of the X-notation is
to prevent contractions 1 though 7 from transforming the variables p and q away and
losing the logical structure in terms of which the logical contractions achieve the fina

solved forrn.

In the next chapter we cxamn -.e in ,,re detail how the contractions are ef.c.ed in t-,

,- .ph ro..rcsena,,.on. c SUPER pr,?s n._

V.' V

'

'

W % % % %

,%.

%-S

O.
o

'. / • % % ."% % % % .-. ,% -'.% " " .". , , ,
--" ., '"S..',' ' .,, . .,..- ,

.. ,., .''' . . , , t , . . .- , - . '." '""" > ""' " " "

CHAPTER 2. GRAPH REDUCTION.

In the SUPER machine an expression is internally represented by a graph. A graph is

a system of nodes, all accessible from the root node of the system. Each node has a

unique address, and a very small memory which can contain the addresses of other

nodes. A node B is accessible from a node A if either A B, or (recursively) if some
node accessible from A contains the address of B. We shall make informal diagrams of

graphs and indicate th-lat a node A contains the address of node B by drawing an arrow

from A to B.

Symbols. The representation of a symbol is a graph consisting of a single node which
which cCntainsinformation specifying its arity, its kind (variable or constant, relationa;

or functional), and which particular symbol of that kind it is.

Combinations. The root node of a combination is labelled by the greek letter a- and

,-. i two adress s, an .p2raor address , . . i.; d~rectiy or indirectly that of the

..ct de of its operator. and an .L _ n address ,.vh ch, is directy or indirectly that c

'n d.

Pointers In the definitions of combination and abstraction graphs we spoke of an

-- dr s ueing "directly or ind:rectlv' th-t of th, root node of an e,.pression. That wa-;

• because in addition to symbols, ccn',bnations and abstractions we have pointers. A

pointer contans the address of the node which ,- !:s . Pointers permit a system of

indirect addressing in graphs. A node directly addresses a node C if it contains the

address of C, and indirectly addresses C if it contains the address of a pointer the

target of which is C or indirectly addresses C. In diagrams of graphs a pointer is

represented as a node labelled by the sign V.
-...

30

",,"J

V~..
0

Existential quantifications. Prefixes. Quantifiers. Variables. An existential quantification

is represented by a graph whose root is labelled by the existential quantifier sign 3,

and contains a matrix address, which directly or indirectly addresses the root node of

the matrix of the quantification, and a prfii address. The prefix consists of n quantifier

nodes, each of which addresses a distinct variable in the prefix of the quantification,

and the prefix address is the address of an arbitrary one of these nodes. These

quantifier nodes are linked into a r: each quantifier node addresses the next one !n

the ring. A quantifier rode is labelled b, the greek letter n. (If n : 0 the prefix is en'< '.

and the prefix address is null. The whce quantificaticn expression is then equivale:'t tc

its matrix). Each variable r'.de addresses the root node of the quantification. ud

cc-responds to a distinct variable in the prefix of the quantification. For example, thu

graph of the quantifica:ion

t'-:" :ix y z Br
iBxozB

has three quantifier nodes, one for each of x, y and z. Finally, throughout the mat;lx cf

the quantification, an occurrence of one of the variables is simply the address of the

variable node corresponding to that variable. For example, the existential

quantification

3x y z (and (equals x y) (and (equals y z) (and (equals x z) true)))

is represented by the graph

31

,N '0.W

-;'%"x ->P

n x

and a d aro and the

.'equals equals equals '

The operand address of a combination cell is represented by a light arrow, and the .

operator address by a dark arrow. Each quantifier node is labelled by n and

addresses its corresponding variable nocda by a dark arrow, and the next quantifier in

the ring by a light arrow. The quantification node e Jidresses its matrix by a dark arrow

. (some node in) its prefix by a light arrow. Each variable in the prefix is actually

anonymous - its distinct address is what gives it its unique identity. Thus, any other

three variables would do just as well in the diagram: this corresponds to the well

known fact that, in the ordinary linear notation, bound variables can be (with suitable

safeguards to avoid clashes and captures) relettered without changing either the

meaning or indeed the deep syntactic structure of the expression.

Motivation for the quantification representation. The reader may be puzzled at this

point to know why we have a second, special, graph representation for existential

quantifications. Is not the combination (some 3 ,x?.y[zB) the "official" expression, and

is not the notation]xyzB merely sugar for it? Yes: nevertheless, inside the SUPER

machine we use both representations.

32

V,.--.

. .r1-.Y . F(- J%*X',f*'*/ F..*,.. . .

.k , : . +. ,. , : r,-- , - L u. i - U -+ . . 0+ .r ,t . ..r- .r .c C.-j . -1, . *_, j . w J+ t - -+ . -

tD. "."

The reason is that in the SUPER machine we implement contractions as lQfcl

operations carried out by small "nodule" processors, one for each node of the

expression graph; and in order to get correct giobal behavior we need two different

(but semantically equivalent) syntactic representations of existential quantifications:

one in which bound variables are abstracted away in favor of combinators (the some

representation), and one in which they are not (the 3 representation). Contractions 45

through 49 are designed to exploit this dual representation.

*Contraction 49. According to contraction 49, if the matrix C of a goal clause

con-tains an equation (equals x T) or (equals T x) as a goal, then (*) should be

contracted to the goal ciause
r- 3x 1 .x1_ 1x1+1... xnC

where the new matrix C' is the result of substituting T for xi throughout C and the new

prefix lacks the variable xi. Now on the face of it this is a very n=nlocal operation.

• "There may be many occurrences of xi in C and the substitution operation must cause

;,., each of them to become an occurrence of T. However, if we use the graph

representation just described, contraction 49 can be effected in a surprisingly local and

economical way.

It is not just the execution of the contraction which has a global character. The

* detection of the 49-redex pattern (which must also be done by the nodule) also

appears to be a global process. The nodule playing the role of the root node of a

49-redex can be arbitrarily far away (in terms of addressing chains) from the equation,

and it is impossible (as far as we can tell) to contrive suitcable local operations which

would detect the fact that it is a 49-redex and would then oring about the necessary

changes. Our solution is to locate the center of the action not in the root nodule of the

%, redex itself but in the root nodule of the equation.
0.

33

-. . . .
% % mm m m M w m l i l l l , + ,mu -

T

' , .+) = A + ', + '"+ , " - + ,"

Consider the immediate "neighborhood" of the equation from the point of view of its

root node:

4:a = 5 :T where C is: 3: cc= ... a= true.:4- 1- 4,
cc' o=2: xi -- 1:'3-4 3: C cc*C 1 a=* Ck. 4 4 4

equals and and

(we suppose that the address of the 49-redex is 1, that of the variable node

corresponding to x, is 2, that of the matrix is 3, that of the equation is 4, and that of the

expression T is 5).

The nodule at 4 detects that it is the equation of a 49-redex located at 1 as foilows. It

detects that it is an equation simply by seeing the constant equals two links down the
operator address chain; that one side of itself is a variable in the prefix of an existential

* quantification in whose matrix it is itself a subexpression, by looking at nodes 2 and 1
and that moreover the matrix is a conjunction of which it is itself one of the conjuncts,
by having just received an 3(1) message from node 1 as described immediately below.

The entire 49-contraction is then effected by the following lQal change:

-4-
" ",4: ox =* 5: T

liiiict =>2: V

equals

Namely, the variable node associated with x, is changed to a pointer whose target S
A.' the expression T. The quantifier node corresponding to xi immediately nctices that it is

now addressing a pointer instead of a variable and accordingly changes itse:f to a
pointer addressing the next quantifier. In graphical form, this quantifier excision thus

- consists of the quantifier node at (say) 6 chang'ng itself from
O.1

6: n 7: next quantifier

4%
; ' to 2: V-->5: T

0.
[V'_ 3 4

6: V - 7: next quantifier

2: V-5:T

whereupon the previous quantifier (the one addressing 6) will immediately bypass 6

and directiy address 7 (see the discussion of such pointer-bypassing behavior in the

next chapter).

Note that this can result, when n = 1, in the only remaining quantifier excising itself, that is,

changing itself into a self-referential pointer (the unit prefix shrinks !o a null prefix) In this case,

the]-node will find itself addressing a null prefix and will change its prefix address to null.

Since every occurrence of the variable x, throughout the matrix C directly addresses

node 2, and since node 2 now has T as its target, each such place now indirect'y

* addresses the expression T instead. The effect is that of a simultaneous substitution in

constant time, regardless of the number of occurrences of the variable.

Thus the]-representation facilitates the 49-contraction enormously. It even permits

simultaneous 49-contractions of the same goal clause with respect to two or more

- equations.

. In the next chapter we discuss in more detail the contraction behavior of the nodule

processors which comprise the bulk of the SUPER machine. We shall then see how
an equation nodule can be made to "fire" a 49-contraction only when the context is

indeed a 49-redex. In our example, node 4 must know that it is in fact one of the

conjuncts C. As we shall see in tK, rext chapter, it will knows this when, but ony

when, it receives an "]1)" message from node 1which has propagatcd to 't along th e

spine of the conjunction. Intuitively, iih!s e..sao says to te equatioi that it is a coo

in a goal clause whose root is node 1. Snce the equation can see that its variab>e

belongs to node 1, the message asstires it that any variables in T which are also in ti

0., prefix of 1 will not be moved outside their scope by the substitution. This prevents, for

example, the invalid contraction, fired erroneously by the equation x = y with respect to
r. x:

3x(and (R x) (and]y(and x y true) true) (and (R y) (and]y(and y = y true) true)'

35

.

@% ".*. . - -* • . -- % -. --. . o. - 7- -$ -,

S -e

which brings the variable y out of its scope, but allows the correct contraction

3x(and (R x) (and 3y(and x = y true) true) = Bx(and (R x) (and (and x = x true) true))

to be fired correctly by the same equation with respect to y. The -message can reach

, the equation from the inner quantifier but not from the outer one, since only and-nodes
can pass such messages along to their arguments. An and-node is the root of a raph

of the form

cx A4,

and

and it will propagate any -message it receives both to A and to B. No other kind of
node will propagate an -message.

. Contraction 48. This is the contraction in which we convert from the some
representation of an existential quantification to the 3-representation. A 48-redex has

the form

,Bx1 . ..Xm(and(some n Q) B)

where m > 0 and n > 1. Thus the expression Q is n-ary. The root of the redex is an

' B-node with matrix the and-node whose arguments are (some n Q) and B. In graphical

form the redex is

4 a::3= cc B

b:X a= o, e:Q

and x n

4i some

where X is the prefix:

36 .,'...,.. .

.....=P , P ° ,' 2 v ," . " . '% "'. . . " .
°
°•"", . """-"- . . ""

°
-"-"%"" %""•"" """ "",T ""' ' """

° "
""

"
' m

.9,b : = n x - a. " ..L

b

The 48-contractum is then obtained in two steps. First, node a executes the allocate
instruction

c, d := (allocate n a e)

which causes the allocation of 3n new nodes, organized into the prefix and

combination described below, and returns their addresses, c and d, respectively.

For convenience of the discussion, we shall suppose that the variables in the newly

allocated prefix are z ... z n.

The newly allocated combination is (Q zi ...zn), that is, in graphical form:

d: a zn

e:Q

and the newly allocated prefix Z is, in graphical form:

01 ' "c: E z 1 --4 a

i, ~ Zn "-4>a

that is, its variables all belong to (and therefore address) the calling node at a.

',".Next, the old and new prefixes X and Z are welded into a single prefix Y by

interchanging the two NEXT addresses in nodes b and c, so that Y is the prefix:

to.
4--

cP-%

thtiisvrabe l eogt (an theefr address). th calling" node. at-' . '" .,,,m,,

1 %

-.- ..- b: i --- x1 --- a

b: x a

7E ~z 2 a

7r =:t --4 a

t x x2 - a

Znx --- a

I

K b m

and the new redex is formed:

a: 3=: cc= B

b: Y cc .=d

and

The net effect is to achieve the inference step

Elx 1 .xm(and (.. z) B) = 3x1 .. XmZI-zn(and (0z 1 .Zn) B)

when the underlined part of the premise is actually represented as (some n 0). Recall
that this inference is valid if and only if the variables z1 ...zn do not occur free in B.

Since they are in fact newly created by the allocation invoked in going from the some
to the 3 representation, this condition is automatically satisfied.

Note that the redex pattern calls for the some expression to be the leftmost conjunct in

the matrix of an existential quantification. We thought about relaxing this condition and
allowing it to be an arbitrary conjunct (the inference being still valid), but we were
unable to deal satisfactorily with the nondeterminism introduced: a goal clause could
then be a 48-redex in more than one way if its matrix contained more than one some
expression.

.'..bY c d

The normal form of the expression (0 zinfen z) will in general have many occurrences of
38

* "., x X>n '~_..o(_Q_~.._r) B x .. m 1 .na d (1 .Z)B

",'i %...

'". each of the variables Zl...z n. By our construction, these will all be direct references to
- the bound variable nodes, as is required by the representation.

Contraction 45. The purpose of this contraction is to move some expressions to the left
within conjunctions, so as eventually to form 48-redexes. The 45-redex pattern in

graph form is

cc cc => B

and and (x n,-
some

and the 45-contractum is

, '/ =----------------

and a c n and

some

with the condition that A be an atomic sentence (which prevents the loop which would

be possible if A were itself a some expression).

Contraction 46. This requires hardly any discussion. An existential quantification
whose matrix is a truth value is equivalent to that truth value. In the graph
representation, therefore, all that is required is for the root of the redex to change its

label from] to V and to redesignate its matrix address as that of its target.

"a.. Contraction 47. This contraction embodies the simple basic inference in which an
existential quantifier prefix may be validly distributed through a disjunction:

3x1...Xm(Or A B) =: (or Ixi...xmA 3x ...xmB).

However, in SUPER we must implement this inference in such a way as to maintain

the properties of the 3 representation of existential quantifications. Recall that in the

39

redex each occurrence of a variable x, in A or in B is simply the address of the

corresponding variable node in the prefix. The 47-redex takes the graphical form

q: 3 x = b: B

p: P cc a a: A

or

and the corresponding 47-contractum is

r: c:B'

Lc = s: ! - d: A' e:P'

or f: P"

where r and s are the addresses of two nodes allocated by the new command, and the

addresses c, d, e and f are those returned by the copy commands:

r, s := new, new

c, e := (copy p q r b)

d,f := (copypqsa).

? The command (copy p q r b) creates (1) a fresh copy, P', rooted at node c, of the

prefix P rooted at node p and (2) a fresh copy, B', rooted at node e, of the expression B

which is rooted at node b. However, wherever B refers to a variable x in the prefix P,

B' refers instead to the corresponding variable in the new prefix P'. The variables in P'

belong to the address r. The command (copy p q s a) creates P" and A' similarly, with

addresses d and f.

This is where, in SUPER, the basic phenomenon of OR-parallelism arises: a variable

may be bound in more than one way because there is more than one solution. In

same cell can be used for the variable, earlier values being overwritten by later ones.

In LOGLISP the different values are encountered in quasi-parallel, and so there too the

need arises for a different cell for each value (or what is the same, a different cell for

each independent "copy" of the variable).

40

W . .%% . " %% %%% , % ", % , p %,% " % % " "- """

,, .%? 4" ,r . " - r'. ,' r - .w".= , #,w I ,~w ,, ' P.P
=

'w
=
,- , ' . -". % '%r

Global effect of combined local transformations. The plan bhind these cntractions is
that if each nodule processor playing the part of a node in the graph representation o
an expression repeatedly "fires when ready" according to its own perception of local
nformation available to it, the combined global effect will be to reduce 'he wh-ole
expres-ion. eventujally, to normal form. If a nodule detects that the expression of which
it is heroo-t 'S the redeox of somne contrac!,>nq-, it wil forthiwith carry out the _ anges
re l ieect t:n transform itself iTo the root of the cerresponding contractonss .

• aohat e f the new n ingte prccps s anoe it ny have tra arepeCsenation of ,C

nformiono qavailae to !!. it cied g obhato edi t I Ih root . . It re e of so c onrct. v. 10l fot ,wit a r u hed.n e

f P 5 0. C.-

ava* . t,! Os t+ e ~scf e n ro e ss,or w c i y h tv, s,,:. , sy., to.

13 m nwa sreant by rerct trnparen-cy" T. su v.~ en cu
. :]r, at rode ; invoiv>j adtresser. c' c r Tr -r ot er ncrl

,..bOh .-. h9 Pn msel v e,: contra-,>,a d-
1 K intay va~jd throughoujt te: 'L t'a This rplk"I 'm

a, '~n-:anv oth-er noe - rrr~ d (?n si a :.(re 1 -2n~al v,,"nt

* "y 7, P_ , te fa k in g plce at i.

It sfrnl ere'-.,re, th at Provided rcoch con'-action- is carried cut corrno~y in its o~n

* ters. ~U .a~~esinvolved will nieabe refe rential'y t ra -parent , that i,, inrislbQ.
* t~o ai cconfra tiomn. Existing stutj0does ncot disaip.pea, when contractions t~

-'ace* it rPmamns behind to be seen by o:,her r-odes who) may shl) be sharing it. Nodes
dappear only if, and when, they become no.ccessible from th~e root node of the ent'e

express,7ion. Until it disappears, a node retains its semanticaly invariant significance.
* In the next chapter we consider in more detail the reclamation of inaccessible nodes.L 41

0i

"R A

VA _N

Are the contractions locally deterministic? No expression can be a redex in more than

one way. An apparent exception to this is the case of redexes of type 49. A 49-redox

can be one with respect to two different equations, or indeed with respect to a singe

equation both of whose terms are variable , In the prefi.. The second case c,

- triv;ally resolved by taking one of the two va,:'hbes (_..ay, t-e left hand side oU t",-

equator)r -) - as" v r . 0 h.. r: c::so in mo':oe :yo a v' "
'. ;th r,,, r~ as' o -, var ~ 'a>2 1 ', .X !'"V._0

. A D-pariiiel -ii ii SU [1 , "

rfo.', n ,s, -" .' -, ' ,OS

s.ame ,var b -, ': -re may vt-' v, . &, < ',...

,, e address i ti e correspanda ro . o. . ' , '.','< -" d % r" t t.rg&t, :. .

two or more di>ferent "bindings" for the same-, vcuo.-bie will be atempteo). Only o ,_ U

these, of course, can be allowed to succeed, and fortunately the logic of the

transformation is indifferent to which of them it is. As we sh,.l see in the next chapter,

the reconciliation of conflicting messages is v,.ry easy to deal with in the Connection

Machine on which we first intend to implement SUPER, and so in practice one of the

"bindings" will be accepted and the others rejected without any further complications.

. It is intrinsic to the full-contraction SUPER scheme that the relation symbols in all "Horn

goals" in a goal clause get simultaneously replaced by the corresponding Horn

predicate expressions, giving rise to AND-parallelism at the higher level of goal

elimination.

42

%
%~,,,..., e..................................

.p , .- o , • o - ,- -. . .- . . -. -. o . .. °... ," . . " .,4 , " •.° .. ,.o•.

[,. * .• % 'p" . .°, '°. • ' •.j-,., °.-., . % °o -o' .".• .• •. • ,. •

""' ' " "" ': """ ' "-" "'" "-.-,'. .:-.'-" b' - V .-. -
• ",' -,-- ." ,., ,-. -: , :--.- . - -:: : : :-:.-:. .:f:-: :-::.:-:-:.-",-:.:-'.. .-. .I

CHAPTER 3. THE SUPER MlACHINE

4' - -'C. 7

434

p

front end machine is concerned the nodular memory is just a region of its total memory,

which can be written to and read from, both in the usual one-word-at-a-time manner

and also in a parallel, all-words-at-once manner. Finally, it has a Postal System,

which is a high speed, high bandwidth communication network modelled on that of the

J Connection Machine, over which the nodules can send and receive messages to each

oher.

A SUPER user vl ,,nteract direchy only ,.h tt e front-end mac -ne, which w.11 cccep 1

as Ia (posotyl sug Ud l'IFR e p re i D hr nreduc c. to ncrm.-l for-m T',

frcnt-end mach ne ...m ,t.: . ro the corm . .. r , SUPER :raph e c-

and insta'ls E in the nodcul'ar mmory, wher, i i. then red,cnd to :ormal fo..

V:., completion of the reduicton recess tho reca.. .o gra)ph is ton reced '

nodular memory by tne front-r'nd machine and tran,!ated back to the sucared r-r..

for output to the user. The translaticn by the front-end machine elimin-.S

abstractions by appealing to contractions 1 through 20. Thus the graph represcr-tat or

, scheme which follows does not need to represent abstractions as such. However, _.s

we shall soon see, the graph representation of quantifications indirectly, but in a high;y

controlled way, permits the graphical representation of the abstractions which occur as

arguments to the some functor.

The whole transaction, from the user's viewpoint, feels just like a transaction with the

single-processor LNF-Plus system. The work done is abstractly the same, and differs

only in being done by steps of multiple redex contraction (indeed, ideally, full

contraction) rather than single redex contraction.

4The nodular memory: 2n nodules linked by the SUPER Postal System. The main

feature of the SUPER machine is its nodular memory, which instead of being a

collection of passive storage cells each having no capability other than to hold a unit

of information for later retrieval, consists of a large number of active elements, called

nodules. Each nodule is a small special-purpose computer which can read from and

• write into its own local memory and can also do simple computations. The SUPER

44

V.
% % %,' ,% %. "-".' """'',- -""'""" : .- - ". " , ,".--'" - - " . ""- ,"""""""". ,".

* N

.- tr

4~

- - ;'2rw~. ~ jii '.K-~~~.E' &'t

*4k, ~

'V.
t .1*'

'C ~.''

N.
N,.' .'*~NM.

N.',

* N'

.4
N N

4.

N'.
V.
.1~

-s

.4-N
-N

4.-'
4.

Nt .d.
"4 1

'4." ~l.4k

0
w\.

'I-

-N..

A.

0
-5.
-t

5%
4%,' '4

'V.

N

N-

- K

-r
"4

N-.. ID.

4" C

-N0%qN- ~, *~"'N /~C, I './K P H

'-N- r ;~:n L LNF

45
V
N,

Mac.

'U

0$
C C # r - -.-. ~-- - N- ** . -. , * ~*.*.

.- ,-i--%.N% ~ * ~ N.. - * -. - - - . . 4 - --

rvrrv .94..~ w~- .c.r4.t.4.r.rr..rt.' .'V*4.*t.' - - * * * .

A N~,

"'4' ~ 4.~.r~h4Kt5S.N. $;s;: ::k;~~..i~ -I
#..~v.Pt PS .% - -. - - NL

: "S

The 1 -bit fields in the first group of six are known as type fields. Exactly one of the type

fields is set to true and the rest to false, in order to show which type of node the nodule

is representing. The remaining five fields are for various housekeeping purposes

,_ which will be discussed later. Each nodule's remaining memory depends on the

contents of its type fields.

A combination nodule (one whose COMBINATION field is true) has two n-bit fields,
.. ,

OPERATOR and OPERAND.

A quantification nodule (one whose QUANTIFICATION field is true) has two n-b.t 'elds,

MATRIX and PREFIX.

A quantifier nodule (one whose QUANTIFIER field is true) has two n-bit fieids.

CONTENTS and NEXT.

- A constant nodule (one whose CONSTANT field is true) has one n-bit field, WHICH.

A pointer nodule (one whose POINTER field is true) has one n-bit field, WHERE.

A variable nodule (one whose VARIABLE field is true) has one n-bit field, WHOSE.

Thus we have nodules with two different sizes of memory. The larger memory size is

that of the combination, quantification, and quantifier nodules, which need two n-b':

fie!ds in addition to their type fields and housekeeping fields. The smaller memory size

, is that of the pointer, variable and constant nodules, which need only one n-bit field in

addit'on to their type field and housekeeping fields.

We refer to the COMBINATION field of the combination nodule whose address is i as

COMBINATION[i], and similarly for other fields and other addresses.

4.

,.a . . .-.. . , -, • , . ., - . , . . % - . . - . . - . , . . . , ,,,.4- -6,. ',£, , . -. -.,. . , . ,'

.-. A .-t.> o (qr ph) expr 3>;,'on F - r'sta.e L:, th. fr.. d

,j,:,. .: -

c jd i th, root of a co r 'r ,-i ,-,<. ---'W, tru

, I - hei t-,e Ki ids &- :o lalse TIe t,;ds P -r, a,-,-

:7 HKAND[] ae roen -et ' 'ely to the acdres--s o) " c<;'.> "r

S node is a co~nstant, the fied C , A] N' set to true and the other type
are set to false Thie f HICH"J' is set to the bt pattern correspondirig o

tne constant.

I te oo es a p ome r, th i. ed -O'NTERi s set !rue and the other type fields

are se' t falseThe f"ld VHE r E s st to the address of its target.

(no .d Is. d ,.i -UAl T!FICATlON[i] s set t

- true ar -1 thie otn,,er type ds ar - t :- alse T ye field MATRIX s sct 10 I

the x ,-*f : -;' "f t:o n 'f t'-e _. ,," - var - of the

- ": t , -

L~~~ rv Oo1. rC0IQ'r';'.

Tn,? REFERENCE COUNT field of each- >I initia'iZed ID thoe corect vaiue by the

front-erd machine when the initial graph- is installed in the nodule memory.

947

I),,#, - ** - '- ~ ~ %.. .% .i
.%:. % %.
%-: %

.4 -w ... %u,: h ie bro ' ..

I

The behavior of a SUPER nodule. When the nodules collectively are set up to

represent in this way the graph expression E, they can be given their signal to start

their reduction behavior.

*The main mission of the ith nodule is to find out if node i is the root of a redex and, if so,

to bring about the changes which represent the corresponding contraction. As the

global reduction process continues, each node in the graph experiences a succenson

of redex-contraction clhan ges, and it is the 1,no of the nodule representing that node t:-

make those charges.

The auxiliary minio, of ne ith nOdulf) t' manage tr-e propag.-ation o' c-. .

information about :s own status with respect to the reductior process as t un4I

Thnis involves the continua' monrtca;ng of both its own s.'a* n, fieds and those ,

0 immediate aescendants, i.e., LNF, ACCESSIBLE, ACTIVE, UNKNO'NK/'1, FREE ar

REFERENCE-COUNT, so as to be ready to take the correct action whet e

appropriate circumstances arise, as discussed below. This auxiliary behavior is rot

strictly speaking reduction behavior: it is more in the nature of housekeeping behavior.

The reduction behavior of nodules. It helps the intuition to imagine oneself cast in the

role of a nodule, and to go through the different possible circumstances which can

arise locally, together w'th the appropriate actions. To begin with, there are many

circumstances in which doing nothing is the correct action. For example, if our

REFERENCE-COUNT .s 0 then we are an inaccessible vertex, and we simply wait for

someth:ng to happen (actually, as will be discussed below, since this means that we

re a "free" ncdule, avacae to be allocated when some contraction elsewhere in th-e

graph requires a new node, we can in fact do something useful, namcly propagate tiue

news of our inaccessibilIty to our immediate descendant(s) by subtracting 1 from tV

reference counts, nullifying our pointers to them, and then setting cur FREE flag to

true). More generally, we do nothing unless we perceive that some action is actua,,ly

called for. However, our passivity is D since we must remain watchful, continuously

monitoring the various information fields in our "neighborhood". When any of them

48

P P d'9, 9

change it may be necessary to spring into action.

The neighborhood of a nodule. We assume (as is the case :ir-,-1ed;ately after 1,1

graph has been set up in the nodular memory by the front-end processor) that "le ty;e

fields in each nodule always satisfy the condition that exactly one of them is true ar'J

the rest false. We shall say that a nodule is a combination, etc., if its COMBINATION

f:eld is true, etc.

" Constants are completely passive. The job of a constant is to stay entirely inactive. It is

there to be addressed by others, and that is all it needs to worry about except (see

above) to watch its own reference count in order to be ready to return itself to the poci

of free nodules when the reference count goes to 0.

* •Pointers do very little. The job of a pointer at address i is just to point at another node

WHERE[i], its target. This is rather an undemanding role except that its target M

suddenly itself become a pointer, in which case WHERE[i] should be changed to

WHERErWHERE[i]]. The point of this change, ,o pun intended, is that pointers should

always be bypassed whenever possible as 'part of the ongoing compaction of the

graph. This is all a pointer node i has to worry about, but to do this properly the pointer

.must monitor two fields. First, it must watch the field

POINTER[WHEREJ]}

In Its target in crcdcr to detect when r. , e. to true Tis will happen for exi, !,l-

t o-e node WHERE[i] undergoes an I- or K-redex contrac.io2" The moment that node-_,

thHERE[i] becomes a pointer, its WHERE field becomes the address cf ja target So

the second field tnat pointer i must mcntor is the WHERE field of its target

WHERE[WHERE[i]]

ready for the moment when the action

49

.0 J

I.-J...

(1) increment REFERENCE-COUNT[WHERE[WHERE[i]]]

(2) decrement REFERENCE-COUNT[WHERE[i]]

(3) replace WHERE[i]

by WHERE[WHERE[i]]

must be taken. In order to perform this monitoring function correctly, the nodule playing
the oart of pointer i must read from PO1NTER[WV-1ERE[i]] and WHERE[WHERE(r] once

each message cycle, and execute this action each time that POINTER[WHERE[i,] is

Combinations do a lot of work. A combination i has to be ready to spot that it has

suddenly become a redex and to take the appropriate action. Consider the possib'e
"views" which a combination has of its neighborhood. First, no matter what kind of

redex it is, or even whether it is a redex or not, a combination must take special action if

its operator or operand is a pointer, namely, bypass that pointer just as we have

already explained. Thus, if i "sees" that

POI NTE R[OPE RATOR[i]]

is true, it knows that the node OPERATOR[i] is a pointer and that what it must do is the

action

(1) increment REFERENCE-COUNT[OPERATOR[WHERE[i]]]

(2) decrement REFERENCE-COUNT[OPERATOR[i]]

(3) OPERATOR[i] becomes OPERATOR[WHERE[i]]

which bypasses that pointer. Similarly for its operand. We shall from now deal with

combinations which do not have an operator or an operand which is a pointer.

50

0-V . -. ,. ,,-..--..- ,
;%': . - ',', '.', " J . " "." .-,- '.-,, - .-.- . -,- - ,-.- ,- -

)t- 1(.' ' ,'' -'-''%'-'r'''''' ' - '' " " ..' - -" ,4 " " " " ," " ." " " .*' "' '. " "t z ., " " • "." " " " ' -. .-" " -.S. 2 .

Let us discuss a few of the contractions to get the general idea of the contraction

behavior of a nodule. First, we consider contraction 18, which deals with I-redexes.

Contraction of the I-redex. If nodule i is an 1-redex what it sees is that
4%

CONSTANT[OPERATOR[i]] and WHICH[OPERATOR[i]] I

and what it must therefore do is the following

(1) decrement REFERENCE-COUNT[OPERATOR[i]]

(2) negate COMBINATION[i] and POINTER[i] (turn itself into a pointer)

(3) set WHERE[i] equal to OPERAND[i] (to its former operand)

If the WHERE field of a pointer nodule is the same physical piece of memory as the

OPERAND field of a combination nodule, then step (3) is automatic.

We next consider contraction 17, which deals with K-redexes.

Contraction of the K-redex. Nodule i detects that it is a K-redex by seeing that the fields

COMBINATION[OPERATOR[i]] and CONSTANT[OPERATOR[OPERATOR[i]]] are both

true and that WHICH[OPERATOR[OPERATOR[i]]] = K. What it must then do is the

following

(1) negate COMBINATION[i] and POINTER[i] (turn itself into a pointer)

(2) set WHERE[i] equal to OPERAND[OPERATOR[i]] (to the operand of its former

*° operator)

(3) decrement REFERENCE-COUNT[OPERATOR[i]]

(4) decrement REFERENCE-COUNT[OPERAND[i]]

(5) increment REFERENCE-COUNT[OPERAND[OPERATOR[i]]]

• (6) set OPERATOR[i] and OPERAND[i] to null.

51

,-,

'%I

Contraction 14 : the pure S-redex. Nodule i detects that it is a 14-redex by seeing that

the fields

COMBINATION[OPERATOR[i]]

COMBINATION[OPERATOR[OPERATOR[i]]

CONSTANT[OPERATOR[OPERATOR[OPERATOR[]]

are all true, that

WHICH[OPERATOR[OPERATOR[OPERATOR[ill]

is S, and that if all of

COMBINATION[OPE RAND[OPE RATOR[OPE RATOR[i]]]

COMBINATION[OPERATOR[OPE RAND[OPERATOR[OPE RATORJ']i']

CON STANT[OP ERATO R[OPE RATO RrOP E RAN D[OPE RATO R[OPERATO R[j]]

are true then

OPERATOR[OPERATOR[OPERAND[OPE RATOR[OPE RATOR[i]]]]]

. is not B.
JNJ

Let

f= OPERAND[OPERATOR[OPERATOR[i]]]

g = OPERAND[OPERATOR[i]]

x = OPERAND[i]

What nodule i must do is the following:

(1) a, b:= new, new

(2) set up a and b to be combinations with reference counts of 1 each and with

OPERATOR[a] = f and OPERATOR[b] = g,

OPERAND[a] = OPERAND[b] = x.

(3) increment the reference-counts of f, g, and x

(4) decrement the reference count of OPERATOR[i]

(5) set OPERATOR[i] = a and OPERAND[i] = b.

S.The other contractions in the "combinator" group (8 through 20) are handled in

4 52

-%

.. analogous fashion.

Contractions 1 though 7. These contractions are intended for execution only by the

front-end machina. and raise no problems of principle.

Behavior of quantification nodes. A quantification node whose address is i has the

responsibility to transmit to its matrix, once each message cycle, the message B(i). This

message will be retransmitted immediately upon receipt by any node of the form (but of

no other form)

c=A

and

to the roots of A and B. As was explained in the previous chapter during the discussion

V- of contraction 49, this 3-message system is part of the engineering of the correct

implementation of that contraction. Any equation (one of whose expressions is a

-. variable) which receives such a message can immediately know whether to fire by

.: comparing the address in the message with that of the owner of the variable.

A quantification node must also watch the node addressed by its PREFIX field, which

will normally be a quantifier node. If (as we saw can happen) the quantifier node

changes itself into a pointer node, then the quantification node will routinely bypass the

* pointer by changing its PREFIX field to address the target of the pointer. However,

because of the ring structure of prefixes, it is possible that the target of the pointer may

be the pointer itself - the null prefix case. In this case the normal bypassing procedure

would merely reproduce the self-reference. Therefore, instead, the quantification node

will change its PREFIX field to null.

Short average lifetime for nodes in graph reduction. In general one must imagine the

creation of new nodes as going on continuously at the same time as the process by
53

-'-

which nodes become inaccessible and therefore available for reuse. The faster both of

these birth and death processes go, the shorter the average lifetime of each node. If the

births happen faster than deaths, the finite pool of available nodes will soon become

empty. There is therefore a premium on the rapid detection of inaccessible nodes:

ideally they would be reclaimed at the moment they become inaccessible, but of course

"the engineering reality is that this moment may pass unnoticed with the consequence

that a 'mathematically. objectively' dead node n'ay go on living (arid, compoind:.,,. th,

"rcbem, consm ing re ure ..r. tqme before finally bein deILetefe :' .

,and recycled.

How nodes nllocated at very high -:te E,'r .c, wth . ,e r-roc."Bsor

,.5o,.,s that n,-,v nouas are ideed cre ter 1 't a v n,' hig t rcW on- -eqtent'.

tbs is offset by a-n equally high or h'-her, ra:e of node rec:ivery t(n Crcmpu t,-c ,.

_•0. soon end wheti zhe pool of available nodes becomes empty. This is why Le attac,

great importance in the design of our nodule processor to its role as scavenger.

A remark concerning nodule recovery. In the contraction of a 14-redex at node i the

following could be the case (and similar remarks apply to other contractions). Let c, d.

and e be the vertices

OPERATOR[i],

OPERATOR[OPERATOR[i]] and

OPE RATOR[OPE RATOR[OPE RATOR[i]]]

Then it is often the case that the reference count of c is 1 - that is, that the only vertex

pointing at c is i. In that case, c can be used as one of the new vertices a, b. Less often,

it happens that not only is the reference count of c equal to 1, but also that of d. In this

case, d may then be used as the other of a and b. Finally, the reference counts of atl

three vertices c, d and e may be 1. In that happy case, not only do we not need to draw

new vertices from the pool, but we can even contribute one to it! This remark shows

that we can often hope to speed things up by avoiding the formality of putting nodules

54Z.

01

% N, % %V" . ' "].. .% "-",'r +.:2.,,,,,, . ,+,.... . , , ,. , • ,e,,. ..V.,. .

back in the pool only to draw them cut again immediately. A similar remark applies,

mutatis mutandis, to the contraction of the other types of redex.

Returning oneself to the pool of free nodules. There is a circumstance, already noted

earlier, under which a.y node i can take a useful action even though it is not a redex. If
4..
• the reference count of i is 0, and it is a constant, then it should do the following

(1) CONSTANT[i] is set to false

(2) FREE[i] is set to true. (proclaim its availability).

On the other hand, if it is a pointer, it should

(1) decrement the reference count of WHERE[i]

* (2) set POINTER[i] to false

(3) set FREE[i] to true (proclaim its availability).

If i is a combination, it should

(1) decrement the reference counts of OPERATOR[i] and OPERAND[i]

(2) set COMBINATION[i] to false

(3) set FREE[i] to true (proclaim its availability).

Similarly for other types of node.

Nodule memory management. The nodule-consuming commands new, allocate and

copy are executed by the nodules in SIMD fashion under the supervision of the

front-end machine. We at present believe that the technique needed for their

implementation is a straightforward generalization of that used in the Connection

Machine operating system for the implementation of the command new alone. Namely,

the front-end machine coordinates all simultaneous requests for free nodules,

computes the responses and transmits them to the requesting nodules. Under the

55

• % % . " . p J
4

". * . % % . 4 '" %4 %" S • . 4.. . ?. - .• - .' ., . . . - *
•
. 4 " ° •."%

%................ %
"4~ ~ -%

assumption that the pool of free nodules is large enough to satisfy all requests, the extra

-. complexity in the SUPER machine caused by the allocate and copy commands does

not raise any new basic issue. It is simply that in the SUPER machine the new nodules

will in general have to be organized into multi-nodule structures (as explained in the,

previous chapter) rather than supplied one at a time (as is all that new requires) Th're

*" copy command is almost entirely analogous to the classic LISP command of t'-e s-''

name, but with nodule processors taking the part of cons-ce!'s

"-" This is a correct realization of full reduction J : * a v' t -, .

c -rre c t re L -z a tu n f ,.e U ' t.f

T h e m an is s u e i s th e c.,. d. i o _ 7 , ,,
-),~ nt '-'d

."ar odule i changes its aocal . ytr , 'a r .

.he neighborhood of i, some of '-,',c oU , u'r '. 0 b, d c

i are themselves "perhaps) aLrn2 ci,:-' rg teir own i-ca; nform,- n v!-,_: -

. show is that the correctness of the cha"'ges made by the nod 'e i is ro t viti, ec

-; changes made by those in the neighborhood of i.

. If a nodule is a redex, then its spinal neighbors are not. The spinal neighbor of an

I-redex is the constant I. The spinal neighbors of the K-redex are the combination KX

and the constant K. The spinal neighbors of the redex Sfgx are the combinatiors S'3

and Sf and the constant S. None of these is a redex, and moreover none w.1! ever

become a redex as long as its FREE field remains false. (Of course, after reclamatic-

into the pool of available nodules, the next incarnation of the nodule may weil be as a

redex, but this is irrelevant). It follows, therefore, that a nodule which needs to read from

the fields of its spinal neighbors in order to reset its own fields to represent the result of

a contraction can rely on those fields to remain unchanged.

The condensation of increment and decrement messages. In order to continue the

correctness argument, we need to know about one of the global capabilities of the

SUPER machine. Irn particular, the SUPER Postal System (after the fashion of the

Connection Machine's Communication Network) provides a condensation service for

56

--,-, .,,-,- -- ,.*.,-,-. -. . --.. ,- -"
" ']- "Z" " " % % " " " % ""% % % " % % "" % % "% " "" """ "" "" ""

"increment" and "decrement" inter-nodule messages. This works as follows: during any

one delivery cycle, a nodule i will be, in general, the addressee of many such

messages, say, m increments and n decrements. They will have been sent to i by all the

other nodules which want to increment or decrement the reference count of i. Instead of

delivering to i such a (possibly) huge bundle of messages the Postal System delivers

one message: add the integer (m -n) to your reference count.

Nodules are small, simple machines allowing large scale replication. A local nodule

memory needs only a small number of bits (80 bits is more than enough, assuming

32-bit addresses) to accommodate its various type, housekeeping and address fields. A

nodule's state is essentially, then, just a single 80-bit word. However, in order to

accomplish its various contraction tasks a nodule must take into account features not

only of its own state but also of those of its neighbors. This information will be acquired
• via incoming messages and will need to be stored locally. So we must postulate a

further, working region of a nodule memory big enough to accomodate the largest

amount of such neighborhood information which might be required. This case arises

with the 12-node neighborhood which is involved in the pattern of redex 45. If we set up

N, enough space to store the state words of 12 other nodes we would need a total nodule

memory of 13 x 80 = 1040 bits. This should be compared with the Connection
"Machine's 4096 bits per processor.

The nodule's processing logic is simple. It has to perform a 42-case analysis to detect

which, if any, of the redex patterns it represents, and then must be ready to execute the

appropriate contraction once a redex pattern is detected. (As we noted earlier, the first

7 of the 49 redexes will not arise in the graph representation). In addition to this cycle of

redex-contraction patrolling, a nodule must test to see whether it needs to carry out the
various propagation chores we have discussed, bypass any pointers it can see, arid so
on. The entire code for all of this amounts to no more than a quite short straightline

program.

,. Thus the nodule is suitable for large scale replication, in the manner of the Connection

O57

F
, .

Machine's memory processors.

The allocation of new nodules from the pool. The pool of free nodules at any time is

just the set of nodules whose FREE field is true. Also, in any one machine cycle, there

will be a set of requests for new nodules, arising from various contractions which are

taking place at that cycle and the consequent various new, allocate and copy requests.

T-e SUPER front-end processor, via the Postal System, coordinates all such requect -

7,.d /rcvded thti the total number of n.w nodules required does not exceed he

of available nod-iles) ant sfiec 7 ath noe' r7quest by send n a -c . tr.

address to te req'estin, hoo:, ,nd c",,7 each allocate an, copy' ,

'--- ;npria!ely to t!he p rameters cf tht- ri - These faciltio.. nge r

processor-cons feature of the Connection Machine, as described by "iH!1is and Se

01 71

In the event that there are more nodules needed to satisfy all requests than there are

free nodules, some requests must perforce be delayed according to some fair discipline

whose details will be related to the general scheme for controlling the firing of

contractions.

Global accessibility analysis. The front-end processor must periodically, in any case,

initiate a global accessibility analysis in order to detect nodules which, although

possessing a nonzero reference count, are inaccessible from the root nodule and

hence ready to be relurned to the pool This process is essentially the same as the

" marki .a process in classica! ISP-like garbage coIection. It involves interrupting the

activities of the nodules, telling them to freeze the addressing topology existing at that

moment. First, the ACCESSIBLE and ACTIVE fields of every nodule are simultaneou'sly

set to false, except for that of the root nodule, in whicn the fields are set to true. Then

the nodules are restarted in a special state in which each nodule i monitors its
ACCESSIBLE field, watching for it to become true.

The moment this occurs, the following action is taken:

58

- - ' '% "" '" % " % "" °° "° ' " " ° ° ° " "" "" " : " " " :"° " : : . " . ." ". " ' ". " "

.I' " .'% -,. Z , 'C ,I _ .,# ,% " . .,+ ," .,' ., ." , ',, . . ., . .- .. ." - . .- .t, o. t . . .- .' ." ' . .° ° . . ° _ ,1 • .._A ... o ° a- -- .. A.. .. . ° .. ° . ." . - ° - •
°

. - ° ° - . ,, . . - - . . o

(1) the ACCESSIBLE and ACTIVE fields are set to true of the immediate

descendants (if any) of whose ACCESSIBLE fields are false

(2) the field ACTIVE[i] is reset to false

, (3) stop

The front-end processor will detect the termination of this accessibility analysis by the

fact that all nodules have a false ACTIVE field. The above program, running on every

nodule, guarantees that there is always at least one ACTIVE field true until the analysis

is completed. At its completion every nodule has a false ACCESSIBLE field if, and only

if, it is inaccessible from the root: at which time all such nodules set their FREE fields to

true.

The SUPER front-end machine. The role of the front-end machine is to be the interface

between the user and the "invisible" nodules and postal system. The user submits one

or more definitions D and an expression E to the front-end machine. D and E are

formulated in a sugared version of the language (whose details we do not concern

ourselves with here), just as in the single-reduction system LNF-Plus. The construction

of the graph representation G of E and of the graph representations of the definientia of

*! D are carried out by the front-end machine, again just as in LNF-Plus. Each occurrence

of the definiendum of a definition is translated to a reference to the root of the graph of

the corresponding definiens.The processing of (the graph G of) E takes place entirely

within the nodules and is the reduction of G to normal form that we have been

discussing. Once the graph is in normal form, its translation back into string notation is

carried out by the front-end machine. There is much freedom in this part of the system

for friendly sugaring of expressions to su. the user's tastes, and none of the problems

* we have discussed are affected by how this (relatively) superficial part of the system is

handled.

The whole transaction appears to the user simply as the evaluation of "E where D" and

the parallel nature of the reduction is invisible.

59

-.

The management of scarce resources. The front-end machine plays a crucial role in the

allocation of new nodules to service the various new, allocate and copy requests issued

as a result of non-conservative contraction processes. (Contractions 17 - 19, 25 - 34, 37,

and 38 are conservative, in that they require no new node., to be allocated). In

coordinating such requests it must inevitably encounter the problem of an excess of

demand over supply, and the consequent need to delay the servicing of some requests

at the expense of others. This problem is just another version of the prohClm

controlling the otherwise uninhibited .. f. orcurrent contractiDns sl c-. c

every node f're as soon :.s t detects that it . redex, or should it wait .rl

permission to fire? Who decides, and what I- the basis of the decimon? T'e d+os

vwould appear- to be a global matter not a local one. No no(,',:.e can know enc:Js" t-

make the decision responsibly. It is, therefore, the front-end machine, with ' r:

view of the whole graph at once, which must administer whatever policy of scarce

resource allocation we can devise. But what should the policy be?

This is in fact a very hard and widely studied problem, and we do not pretend that we

* have discovered a solution to it. The whole point of parallel computation is that some

subtasks should be started even though we are not sure at the time that they will

- actually be needed for the eventual output. For example, the classical conditional

expression (if A then B else C) normally is evaluated by first evaluating A, in ord-r to

decide which of B and C to evaluate and thus complete the process. This means that

*: the time needed for the whole task is at least: time(A) + min(time(B), time(C)). All

* opportunities to process the B or C parts of the task in parallel are foregone, on the

"- grounds that some (but we do not know which part) of the work will have been wasted.

- Obviously, in order to gain time through concurrency, we have to give up the policy of

'avoidng useless work. In fact, if we gain speed by evaluating both B and C at the same

Itime as A, how can we so easily say that the unused B (or C, as the case may be)

represents useless work? After all, it gains us the speed.

* So it is with the general problem of deciding which contractions to perform. The easy

60

.0 -e V-.-U %' eU -e

. I d \/U0P*-,.. -"."€,--".'-, : **.. \..:-..;:- X ;:;"....,"..,." -' .-.V * * % *-: ,-, . %.- ..-.,...-.. -..--v .. *.
L";'-. .". g.,"_.-d,. _- ._-_-_,_ ., '.,., ,.,,' f'-, -, .:,.". ". .-", ,,,,.',-.-.'.,., . • ., ,- ,-.,., .v*

policy of "fire when ready" assumes, in effect, infnitoly many nodules We do in f.:1-_1

have a lot of them, and in many smaler probens we can pc'haps actually oper.

this mode. (Some LISP computations requre rio garb o c'C-t' , on

Generalized breadth-first control. Probably what has to be done is to cperate acccrc:

to some generalized a priori notion of "fairness" so designed as to prevent a c'

node from falling too far behind in the development. For example, a simple schcr:

would be for each new nodule to be given a time-stamp recording the time at which .

allocated, and for nonconservative redexes to be contracted (if demand exceecs

supply) according to an oldest-first priority discipline. We shall be able to experrme,:*

with various schemes of this sort when the Connection Machine becomes ava!a..

later in 1987.

I0 SIMD architectures. Computer architects distinguish two kinds of parallel architecture:

- Single Instruction-stream, Multiple Data-stream (SIMD)

• Multiple Instruction-stream, Multiple Data-stream (MIMD).

In SIMD machines a sequence of intructions comprising a single program P is

broadcast by a "master" processor simultaneously to many "slave" processors, each of

which executes these instructions in lockstep with the other slaves. However, each

individual slave acts upon its own data set, so that in general different computations

,,,,. take place in each slave: the same program running on different data. The outputs of

each slave can be communicated not only to the master but also to its neighbors,

according to whatever is the connection topology of the whole machine - say, the

2-dimensional grid topology in which each slave has four neighbors: North, South, East
O and West.

Such a grid organization is a natural one for solving many types of computation arising

from the partial differential equations of physics and engineering. For example, in

61

F% %

Jc I% ;a"

solving the equation for the equilibrium distribution of heat over a region of a plane

surface one represents the region as a grid of cells, each (except for those on the

boundary of the region) with four neighbors. Each cell, represented by its own slave'

processor, repeatedly computes, as its own value, the number which is the averag c'.

the values of its neighbors. Given fixed values in the boundary cells, and some int

va!ues in the interior cells, this computation can proceed through as many iteral ons

are needed to armve at th'e equilibrium.

The Connection MaChiie is SIMP. Ye Cc:c, o,,, hn1ha 7
r.... 1 ';t' e: nt. r -s4 ,'f'''; ;C t, 2V C't' fl'' -

* I''' crct'osr•e n h~d~-r c'n,'c,' o"st. n "

• ,- ~"s the ertices ';. . of:,; anu ns-cimensional hypedrc...... T ' , ub, but C this' "hardwaret -lee t......g. ..,

M. "21 f

"" si th'3e topologyr~q witheic the: prog,..rm isrdiectly 'oneed Rahrteesa* "iger-evl opolgy whch inefet i b hecnncio arwre

t+

Connection Machine's general purpose communication network. Of cocerse c.

e csprocessors Thi c i t that of a costw svsrie a ne -:,ai _.

as the vertices of an n-dimensional hypercube), but this "hardware-level topost e wy" s

sof the topology with which the program is directly concerned. Rather, there is a

s"higher-lvel topology" which, in effect is smu ated by the connection hardware. Ths '

based on the athathe hypercube connections can be made to sus.ort

het gyain system in which, in one "delivery cycle", every slave psocet;cr cpte

send a message (of fixed length, say. 32 bits) to, and receive a similar messa.buerfy,)

62

e r-vpery cther slave proceso,,r. Ths capability 's that of a Q st',", s tr-, - o e .

€- t"c, ,--

-essages to a give-, addre s. and rec,.-ives merss.-ies ser-,t to o-'he' , . ow~r'. d r s -

"soft" topolog';es which can be set up via s',.-ch a postal 2 't¢Ican lbe varied, u 2:,-

progrann control,' and made to be whatever is appropr'.ate for the rrrotbl m .2 ,.nn:

despite the fact that t,',e "hard" topology on whnich ill is running remains fixe(: ~io

pattern of the actual physical wiring interconnecting the slaves•

The topology can vary even during the computation. Not only can one set up tile

Connection Machine at the start of a problem to have, say, a grid topology, or a butterfly

62 "

-0 -W. N -0 NN N
% % 0*0 % W %

topology, or whatever - in imitation of any one of the fixed-connection parallel machineQ

- but by suitable programming one can even get the effect of being able to rewire tV.o

connections during the computation, changing the connection patterns to sult th:e

deve!oping demands of the problem as imposed by the data.

Data parallelism vs. control parallelism. This is particularly necessary in prc -I -s

whose inherent parallelism resides in the data rather than the algorithm. In man,

problems the data objects consist of very large numbers of elements connected

together in meaningful ways which are part of the data structure (as, e.g., in the

-" expression graphs of our earlier discussion) and the parallelism in the comOLstat cn

*,.r consists of the concurrent transformations which take place at the different elements of

the overall data structure. These typically (as in the expression graph case) result in

changes in the data structure, old elements disappearing and new ones being created,

* and o!d connections being severed and new connections being introduced. T,e

changes are brought about by the presence of the same "algorithmic force" being

_ continuously felt throughout the data, as it were, just like one of the natural fields

--described by the physicists. One has, so to speak, to give the "equations of the force

field" in the form of an algorithm which must be executed over and over again at each

"point" in the "data space". This kind of computation exhibits what Hillis and Steele call
I.- -. dnta n.arolielism.

This is in contrast with control parallelism, which appears in computations where there

are many different algorithms running "processes" which exchange data arvd

"cooperate" with each other in order to accomplish some global objective. This is the

most intricate sort of MIMD parallelism, the kind of parallelism which most people think

of when parallel computation is mentioned - many different machines working at the

same time, each doing its own thing but interacting suitably with the other machines

from time to time. Control parallelisin is vy. difficult to program, since the interactions

between processes can be extremely complex. One has to program each machine

separately, but with one eye on the programs for all the other machines, so that each
machine deals properly with the interactions in which it may take part. In a sense one

63

AV

e * e, . . - " .. *. .A *'%,. % ',- , :., . -,',",:,- ." ', ",. ., , '', '",'-'-".-. , .,.-%-,-.-,'--,.--. %--."-, ..-%"%-.[.'b
If ," % w ,'. %km - ., , . . J , -: . : . ,r ,, , e W P W" ,' ' , ,' ",

must be "conscious" of the entire system at all times.

Data parallelism on the other hand is far easier to manage. We write only one (often I
quite simple) program which runs a process which is "cloned" into a horde of identical

1, processes at work all over the data space. The interactions between these processe-

:. are typically far less complex than those which arise in control parallelism, and one can,

so to speak, relegate them to the "unconscious" since they do not require consciou,,

explicit supervision. The interactions are automatic side effects of the "force field" w ;ch "
is imposed by the common algorithm at work throughout the data.

The Connection Machine can simulate the SUPER machine. Our design for !he

• SUPER machine is a mixed SIMD-MIMD architecture. Our nodule processors have a '-

certain amount of local autonomy and carry on with their own computatonrs

independently of the front-end machine. However, the front-end machine can, where

necessary, interrupt the nodule computations with a freeze command and then assume %

control. In effect it can switch the system to SIMD mode from MIMD mode and then

broadcast instructions to all the nodules simultaneously. This, it will be recalled, is how
- we do the "setup" phase of the accessibility analysis. As soon as the nodules are

, readied to propagate their accessibility, the front-end frees them to return to MIMD

Smode.

Hillis' and Steele's example. In their paper Data Parallel Algorithms Hillis and Steele
use the process of parallel combinator reduction as one of several examples illustrating
the way one can program the Connection Machine to take advantage of the natural data .

4 parallelism in a problem. We have edited their pseudo-ALGOL code somewhat to mrna§.

it more intelligible, correct one or two minor errors, and render it mcre compatib!e v, --

our own notations, but otherwise we have maintained the spirit of their illustration. The I
idea of the program should be quite clear in the context of our previous discussion. The
function new returns the address of a new processor, in analogy with LISP's cons.

Indeed Hillis and Steele call it processor-cons, rather than new.

It is not our purpose to criticise their reduction algorithm, but only to show how the

SIMD style can be adapted readily to the simulation of a mixed SIMD-MIMD architecture

I ,

" ~64 ,,

.- 9 -r r . * - - p . . . " .. , %J.
%r %--* -

J. J*A

such as that of the SUPER machine. However, we would like to point out that their

program does gloss over a number of issues which we have discussed in detail,

*," especially as far as the reclamation of dead nodules is concerned. It is not necessary to

interrupt the reduction processing to do garbage collection except when the

reference-count based continuous reclamation falls behind the demand for new nodes.

,,, N1or is it a trivial matter to determine efficiently whether the graph is in normal form. As

our discussion of the matter immediately below suggests, we consider that the

computational issue is to be able to turn the normal form property into a local property of

the root of the £'-aph rather than to let it remain (as it naturally is) a global property of the

• "whoie giaph.

% Finally, we of course would argue that it is necessary to introduce pointer, constant and

quantification nodes as well as combination nodes, in order to have an efficient

representation of the graph.

ITheir algorithm is then the following:

65

.1 1

I

% "

I%
.1' 1

while [graph not yet in normal form] doI
Ifor each combination node n In parallel do

IIopti : OPERATOR [n]

IIf COMBINATION [opt] then

opdl :=OPERAND [n]
f COMBINATiON(opdl) and OPERATOR [opdl] =I then

[II OPERAND [n]I: OPERAND[opdl]

fii
-. I I I

I optI o = IOPERATOR[optll

I I f opt2 = K then OPERATOR [n]: 1, OPERAND[n]: OPERAND[optl] i

I iIf opt2 = I then OPERATOR [r.]: OPERAND [opti] If

II Iif COMBINATION (opt2) and OPERATOR[opt2] = S then

wile [r a:= new; b:= new

optl : OPERATOR [a] OPERAND [opt2l; OPERAND [a] opdl;

OPERATOR [b] OPERAND [opti] OPERANIIj: opdl

I OPERATOR [n] := a; OPERAND [n] b

l~l-i

I fi

rof

[perform garbage collection if necessary]

elihw

and we believe that its concision and clarity are exemplary.

* SUPER front-end monitors nodules to detect normal form. The front-end machine has
itself an important role to play in the reduction process, namely, to watch its

Cdevelopment and determine when it has reached a suitable stopping point. In the

LNF-Plus system, the reduction continues until the lazy normal form is attained by the

expression graph (see Volume 2, 3.4). It will be recalled that lazy normal form consists

4 ~of not containing an initial redlex; other (non-initial) redlexes may well be present. This
means that the "spine" of the graph is in its final form, but the "arguments" need not be.
This condition can be detected by examination of the graph's 5D n. alone. The spine ofI' a meaningful graph is the longest sequence of vertices, starting at its root, such that
each vertex is the operator of its predecessor. It follows immediately from this definition

66

a%

-" that the spine is finite, and that its last element is an atom. This atom is called the ThLti
21am of the graph. If the spine contains no redex (and it can contain at most one) then
(by definition) the graph is in lazy normal form. So the front-end machine has to watch
for the spine's becoming "empty" of redexes. The following discussion is a summary of

that in Volume 2, 1.3.3.

The LNF field. The field LNF in the local memory of nodule i is set to true when the
vertex i detects that i is in lazy normal form. That is to say, i observes that the following

condition is true:

either i is an atom

or i is a pointer and the field LNF [WHERE [i]]is true

or i is a non-redex combination and LNF [OPERATOR [i]] is true.

Each nodule i, as part of its routine behavior, monitors this condition and sets LNF[i] to

0 true as soon as the condition becomes true.

The SUPER front-end machine need only watch the root's LNF field. Given the correct
implementation of the above piece of nodule behavior, it is easy to see that the
front-end machine need only watch the LNF field of the root nodule to be able to detect
when the graph has reached lazy normal form. Compared with the lazy normal form
reached by the single-reduction system LNF-Plus, the SUPER lazy normal form will be

somewhat more "refined" in the sense that the arguments of the expression will have

experienced many more reduction steps.

SUPER parallelism invisible to user. We emphasize again the point that data parallel
computation has the very desirable feature that it feels to the user, sitting at the front-end
machine, just like ordinary single-processor computation, the concurrency behind the

scenes being invisible. In SUPER computations the user is aware only of the fact that
the expressions given to the front-end machine as input evoke some kind of internal
reduction process which results eventually in a suitable output expression. That this
involves the cooordinated behavior of a very large number of processors is evident only

indirectly from the speed with which the reduction takes place and from the fact that the
arguments (in a lazy mode of reduction) are reduced somewhat further than would have

been the case in a single-reduction machine.

67

N n N

W "°-

This implicit parallelism avoids the extremely difficult problems of intellectual control
over the complexity of a system of cooperating concurrent processes. To try to remain

cognizant of the separate behavior of each processor in a large multiprocessor system

is a severe strain on the limited human capacity to handle dynamically changing

.-.. information patterns.

P P

%%

a

0.- ,

r~68

0.,.%

[' ." -,

|° " .' '4.%W

CHAPTER 4. RELATED WORK.

We are aware of other work on parallel combinator reduction by Simon Peyton jones

[5], Paul Hudak [18], and by Joseph Goguen and Jose Meseguer [11].

The ALICE project [9] at Imperial College, London, is a multiple-reduction parallel

architecture for the X-calculus. Mago [22] has a project to design a fine-grained

parallel multiple-reduction machine for the X-calculus. There are several projects to

develop dataflow architectures which must be considered multiple-reduction machines

for simple applicative systems which fall short of the full expressive power of the

* languages considered in this report. Only one of these, at the University of Manchester

in England, has actually been built [14].

The earliest reduction machine architecture of any kind known to us is Klaus Berkling's

X-calculus single-reduction processor, the GMD Machine [3]. More recently there have

been two SKI-graph single-reduction machines built by the SKIM group led by Arthur

Norman in Cambridge, England [8], and another one built by the NORMA group at the

former Austin Research Center of the Burroughs-SDC Corporation (now UNISYS) [25].

There is another project currently under way at the UNISYS Paoli Research Center to

build a system similar to SUPER. The G-machine system [1, 19] at the University of

Goteborg in Sweden involves compiling runtime code for a conventional von Neumann

processor too carry out the reduction of a SKI-graph-like transform of the source

, expression.

Of course it is the pioneering, elegant systems of Turner [28] which have inspired much

of the above work, and which certainly have been a major influence on our own.

69

!.1

REFERENCES.

[1] Augustsson, L. A compiler for Lazy ML. Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, Austin, 1984.

[.] Backus, J. Can programming be liberated from the von Neumann style?
The Turing Award Lecture for 1977, in Communications of
the A.C.M., August 1978.

[3] Berkling, K. J. Reduction Languages for Reduction Machines. Second

International Symposium on Computer Architecture, 1975.

[4] Burge, W. H. Recursive programming techniques. Addison-Wesley, 1975

[5] Clack, C. & The Four-stroke reduction engine. Conference Record of the
Peyton Jones, S. 1986 Symposium on Lisp and Functional Programming, 1986.

* [6] Clark, K. L. Negation as failure. In Logic and Databases, edited by Gaffaire
and Minker. Plenum Press, 1978.

[7] Clark, K. L. Predicate logic as a programming formalism. Ph.D. Thesis,
Imperial College, London, 1979.

[8] Clarke, T. J. W. SKIM - The S, K, I Reduction Machine. Conference Record of
et al. the 1980 Symposium on Lisp and Functional Programming.

' [9] Darlington, J. & ALICE - a multiprocessor reduction machine for the parallel
Reeve, M. evaluationof applicative languages. Symposium on functional

languages and their implications for computer architecture.
Goteborg, Sweden, 1981.

[10] Fuchi, K. Revisiting original philosophy of Fifth Generation Project
Proceedings of the International Conference on Fifth Generation
Computer Systems 1984. ICOT, Tokyo, 1984.

70

[11] Goguen, J. & Models of computation for the Rewrite Rule Machine. SRI
Meseguer, J. Technical Report, July 1986.

[12] Greene, K.J. A fully lazy, higher order, purely functional reduction language

with reduction semantics. CASE Center Report 8503,

Syracuse,1 985. (also Volume 2 of this report).

[13] Greene, K.J. User's Guide to the LNF-Plus System.

Syracuse University, 1987. (also Volume 3 of this report)

[14] Gurd, J.R. et al. The Manchester prototype dataflow computer.
University of Manchester Technical Report, 1979.

[15] Henderson, P. Functional Programming. Academic Press, 1979.

[16] Hillis, W. D. The Connection Machine. MIT Press, 1985.

[17] Hillis, W. D. & Data parallel algorithms. Communications of the A.C.M 29,

Steele, G. L., Jr. 1986, 1170 - 1183.

[18] Hudak, P. & Distributed execution of functional programs using serial

Goldberg, B. combinators. IEEE Transactions on Computers, Vol. C-34, 1985.

', [19] Johnsson, T. The G-Machine: an abstract machine for graph reduction.

Goteborg, 1983.

[20] Kowalski, R. A. Predicate logic as programming language. Proceedings of IFIP

*Congress 74.

[21] Landin, P. The next 700 programming languages. Communications of the.

A.C.M. 9, 1966.

[22] Mago, G. A cellular architecture for functional programming. Proceedings
*of IEEE Computer Conference 1986.

71

% - %----

:,, ,.'.'.,. - ," . ",,-.'
"
.. o' .. .,.'.,'.- .4 .-."-'-" ,,..,".. ,-.......-.... .. , ..-. ,=

[231 Robinson, J. A. A machine-oriented logic based on the resolution principle.

J.A.C.M.,12, 1965, 23 - 41.

"2,41 Robinson, J. A & LOGLISP - an alternative to PROLOG. Machine Intelliaenc. 10,

Sibert, E. E. 1982.

L2 5] Scheevel, M. NORMA: a graph reduction processor. Conference Record of the

1986 ACM Symposium on Lisp and Functional Programming.

[261 Steele, G.L. Jr. SCHEME: an interpreter for extended lambda calculus. Al Memo

& Sussman, G.J. 349, MIT, 1975.

[27] Stoye, W. R., Some practical methods for rapid combinator reduction.

* et al. Conference Record of the 1984 Symposium on Lisp and

Functional Programming, 1984.

[28] Turner, D. A. A new implementation technique for applicative languages.

Software Practice and Experience, 9, 1979.

72

O , 0*

ye

M ISSION
Of

* Rome Air Development Center
* RAVC eans and excutes iesatch, d'veprnen t, te

and seected acquiisition ptog9tam6 in 'SLPppc>Lut o'
CCTmmaad, Cont,,o , Communiucations and InteU.;g
(C -1 a c t iv >fi t Techintca and entacuiLng

-i~pc'~t wthin a'tLcqs c competence ts ptc'v~cd t

rL,Mtk ic c!iS, C ", nc " ap dc j c om n t i, a tte
qtL a it ,itr c t'C't .0 _ i -,I:; tCC data c , ,oi t t 7 t c tC

atc sc i ckIc c5 c

CL

'4

q ~1L
a.

ThR1~

p~.

Lcf~cP~

'~.Y ~
a- % '4. %

~a-N

